Mapping Blood Lead Levels in China during 1980–2040 with Machine Learning

中国 铅中毒 血铅水平 心理干预 铅(地质) 人口学 社会经济地位 环境卫生 地理 煤燃烧产物 铅暴露 医学 人口 生物 古生物学 考古 精神科 社会学 内科学
作者
Yanni Zhang,Mengling Tang,Shuyou Zhang,Yaoyao Lin,Kaixuan Yang,Yadi Yang,Jiangjiang Zhang,Jun Man,Iason Verginelli,Chaofeng Shen,Jian Luo,Yongming Luo,Yijun Yao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (17): 7270-7278
标识
DOI:10.1021/acs.est.3c09788
摘要

Lead poisoning is globally concerning, yet limited testing hinders effective interventions in most countries. We aimed to create annual maps of county-specific blood lead levels in China from 1980 to 2040 using a machine learning model. Blood lead data from China were sourced from 1180 surveys published between 1980 and 2022. Additionally, regional statistical figures for 15 natural and socioeconomic variables were obtained or estimated as predictors. A machine learning model, using the random forest algorithm and 2973 generated samples, was created to predict county-specific blood lead levels in China from 1980 to 2040. Geometric mean blood lead levels in children (i.e., age 14 and under) decreased significantly from 104.4 μg/L in 1993 to an anticipated 40.3 μg/L by 2040. The number exceeding 100 μg/L declined dramatically, yet South Central China remains a hotspot. Lead exposure is similar among different groups, but overall adults and adolescents (i.e., age over 14), females, and rural residents exhibit slightly lower exposure compared to that of children, males, and urban residents, respectively. Our predictions indicated that despite the general reduction, one-fourth of Chinese counties rebounded during 2015-2020. This slower decline might be due to emerging lead sources like smelting and coal combustion; however, the primary factor driving the decline should be the reduction of a persistent source, legacy gasoline-derived lead. Our approach innovatively maps lead exposure without comprehensive surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江洋大盗完成签到,获得积分10
刚刚
可爱的沛珊完成签到,获得积分10
刚刚
香蕉觅云应助邓鹏煊采纳,获得10
1秒前
复杂的路人完成签到 ,获得积分10
4秒前
Zachary完成签到,获得积分10
4秒前
Zj完成签到,获得积分10
4秒前
xiaozang完成签到,获得积分10
4秒前
4秒前
是一整个圆完成签到,获得积分10
4秒前
4秒前
4秒前
小董不懂发布了新的文献求助10
5秒前
洁净寒凝发布了新的文献求助10
8秒前
8秒前
feng_qi001发布了新的文献求助10
9秒前
11秒前
Zzm完成签到 ,获得积分10
11秒前
12秒前
Erin完成签到 ,获得积分10
12秒前
璐璐完成签到 ,获得积分10
12秒前
fuxiao完成签到 ,获得积分10
14秒前
知足且上进完成签到,获得积分10
14秒前
16秒前
zhj发布了新的文献求助10
16秒前
Sun完成签到,获得积分10
18秒前
feng_qi001完成签到,获得积分10
19秒前
Smoiy完成签到 ,获得积分10
20秒前
鲜艳的从波完成签到,获得积分10
20秒前
Jasper应助Yolo采纳,获得10
21秒前
21秒前
背后橘子完成签到 ,获得积分10
22秒前
22秒前
22秒前
pine发布了新的文献求助10
23秒前
丫丫完成签到 ,获得积分10
23秒前
zhj完成签到,获得积分10
23秒前
白剑通完成签到,获得积分10
24秒前
Lonala完成签到,获得积分10
24秒前
目土土发布了新的文献求助10
25秒前
Feng5945发布了新的文献求助10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788210
关于积分的说明 7784949
捐赠科研通 2444164
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625576
版权声明 601011