An Efficient Tiny Defect Detection Method for PCB With Improved YOLO Through a Compression Training Strategy

一般化 最小边界框 任务(项目管理) 计算机科学 交叉口(航空) 面子(社会学概念) 计算复杂性理论 机器学习 模式识别(心理学) 人工智能 工程类 图像(数学) 算法 数学分析 社会科学 数学 系统工程 社会学 航空航天工程
作者
Zhou Wen,C.C. Li,Z. Ye,Qiyi He,Zhe Ming,Jingliang Chen,Wan Fang,Zhenhua Xiao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:8
标识
DOI:10.1109/tim.2024.3390198
摘要

Tiny defect detection is a knotty task in industrial electronics production. Existing traditional and deep learning methods have achieved satisfactory performance, however, they still face challenges in accuracy, generalization ability, and computational complexity. Therefore, this study designs a Tiny Defect Detection-based You Only Look Once (TDD-YOLO) model and proposes an innovative compression training strategy to train on low-resolution images and test on original images. Firstly, a four-ME layers structure is adopted to the backbone network, to integrate more underlying information and extract effective features. In addition, a miniature detection head is incorporated into the head network to improve the accuracy and generalization performance of YOLO. Meanwhile, TDD-YOLO introduces Wise Intersection over Union (W-IoU) to re-evaluate the loss of bounding box regression and reduce false negatives by fitting the model well to regular quality anchor boxes. Finally, an image compression method at different ratios is applied in the proposed compression training strategy, to reduce computational complexity and surprisingly further improve accuracy. Comprehensive experiments on several variable compressed datasets which are based on a public Printed Circuit Board (PCB) defect dataset validate the effectiveness of our theoretical approach and illustrate that our proposed method outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
yang完成签到,获得积分10
1秒前
2秒前
meili完成签到,获得积分10
2秒前
flippedaaa发布了新的文献求助10
3秒前
科研通AI5应助雪山飞龙采纳,获得10
3秒前
缥缈老九完成签到,获得积分10
3秒前
zzz发布了新的文献求助10
3秒前
华仔应助眯眯眼的晓蕾采纳,获得10
4秒前
4秒前
daidai发布了新的文献求助10
4秒前
一生完成签到,获得积分10
5秒前
CChi0923发布了新的文献求助10
5秒前
破三贼完成签到,获得积分10
5秒前
MADKAI发布了新的文献求助10
6秒前
clytze发布了新的文献求助10
6秒前
哈哈和完成签到,获得积分10
7秒前
传奇3应助eleven采纳,获得10
7秒前
8秒前
8秒前
随行由心发布了新的文献求助10
8秒前
动漫大师发布了新的文献求助50
9秒前
斯文的枕头完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
科研通AI5应助黑暗精灵采纳,获得80
11秒前
少华完成签到,获得积分10
12秒前
要减肥的罡完成签到 ,获得积分20
12秒前
13秒前
半枫荷完成签到,获得积分10
13秒前
13秒前
刘金金完成签到,获得积分10
14秒前
猪嗝铁铁发布了新的文献求助10
14秒前
zzz完成签到,获得积分20
14秒前
CipherSage应助木子采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Essays on Employer Engagement in Education 210
University-Industry Collaboration and the Success Mechanism of Collaboration 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3690435
求助须知:如何正确求助?哪些是违规求助? 3240545
关于积分的说明 9839160
捐赠科研通 2952264
什么是DOI,文献DOI怎么找? 1618613
邀请新用户注册赠送积分活动 765261
科研通“疑难数据库(出版商)”最低求助积分说明 739182