An efficient tiny defect detection method for PCB with improved YOLO through a compression training strategy

培训(气象学) 压缩(物理) 计算机科学 电子工程 人工智能 工程类 材料科学 物理 气象学 复合材料
作者
Zhou Wen,C.C. Li,Z. Ye,Qiyi He,Zhe Ming,Jingliang Chen,Wan Fang,Zhenhua Xiao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14 被引量:5
标识
DOI:10.1109/tim.2024.3390198
摘要

Tiny defect detection is a knotty task in industrial electronics production. Existing traditional and deep learning methods have achieved satisfactory performance, however, they still face challenges in accuracy, generalization ability, and computational complexity. Therefore, this study designs a Tiny Defect Detection-based You Only Look Once (TDD-YOLO) model and proposes an innovative compression training strategy to train on low-resolution images and test on original images. Firstly, a four-ME layers structure is adopted to the backbone network, to integrate more underlying information and extract effective features. In addition, a miniature detection head is incorporated into the head network to improve the accuracy and generalization performance of YOLO. Meanwhile, TDD-YOLO introduces Wise Intersection over Union (W-IoU) to re-evaluate the loss of bounding box regression and reduce false negatives by fitting the model well to regular quality anchor boxes. Finally, an image compression method at different ratios is applied in the proposed compression training strategy, to reduce computational complexity and surprisingly further improve accuracy. Comprehensive experiments on several variable compressed datasets which are based on a public Printed Circuit Board (PCB) defect dataset validate the effectiveness of our theoretical approach and illustrate that our proposed method outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OAHCIL完成签到 ,获得积分10
1秒前
英姑应助邵竺采纳,获得10
2秒前
不配.应助YC采纳,获得20
5秒前
5秒前
daguan完成签到,获得积分10
6秒前
6秒前
情怀应助robi采纳,获得10
6秒前
7秒前
7秒前
sally完成签到 ,获得积分10
7秒前
9秒前
Orange应助活泼飞鸟采纳,获得50
9秒前
10秒前
10秒前
一二发布了新的文献求助10
10秒前
mzy发布了新的文献求助10
14秒前
CodeCraft应助北雁采纳,获得10
14秒前
14秒前
15秒前
犹豫弘文发布了新的文献求助10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
16秒前
robi发布了新的文献求助10
18秒前
tt11111完成签到 ,获得积分10
18秒前
22秒前
就月听雨完成签到,获得积分10
23秒前
活泼飞鸟发布了新的文献求助50
25秒前
26秒前
可爱的函函应助mzy采纳,获得10
26秒前
jayus完成签到,获得积分10
26秒前
北雁完成签到,获得积分10
26秒前
眼睛大的尔蝶完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825