Maize stem–leaf segmentation framework based on deformable point clouds

点云 分割 计算机科学 人工智能 交叉口(航空) 模式识别(心理学) 地理 地图学
作者
Xin Yang,Miao Teng,Xueying Tian,Dabao Wang,Jianxiang Zhao,Lili Lin,Chao Zhu,Tao Yang,Tongyu Xu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 49-66 被引量:6
标识
DOI:10.1016/j.isprsjprs.2024.03.025
摘要

The efficacy of three-dimensional (3D) point clouds in studying crop morphological structures is based on their direct and accurate data presentation ability. With deep-learning integration, organ segmentation from point clouds could serve as the basis for tremendous advancements in organ-level phenotyping. However, despite the potential, the acquisition of a sufficient number of annotated plant point clouds for practical model training remains a major hurdle. To help overcome this limitation, we constructed a 3D point-cloud dataset specifically for maize stem–leaf segmentation encompassing 428 maize plants ranging from 2 to 12 leaves. We also developed a point cloud enhancement strategy that uses highly controllable deformations to improve the morphological diversity of the training set significantly, while preserving the local geometric features of organs. Our dataset supports the generation of abundant training data from a limited number of labelled data, and we also provide a segmentation framework based on the augmented data to validate the efficiency of our enhancement technique. Two labelled data items were randomly chosen from our plant dataset based on every leaf number, yielding 22 labelled data items total, to produce several deformed point clouds for training the PointNet++ semantic segmentation model, as well as the hierarchical aggregation for the 3D instant segmentation (HAIS) model. These models were tested on 406 datasets, where the PointNet++ model secured a 91.93 % mean intersection-over-union (mIoU) in semantic segmentation and the HAIS model obtained an 89.57 % mean average precision (mAP) in instance segmentation. Following post-processing, an instance segmentation result of 93.74 % mAP was achieved with the HAIS model. These findings demonstrate that our method allows for the efficient training of organ segmentation models with minimal labelled data input in a reduced timeframe. Moreover, it offers an effective tool for point-cloud parsing in maize phenotyping research. Our Maize dataset is available from https://github.com/syau-miao/SignleMaizePointCloudDataSet.git, and the source code of our method can be found at https://github.com/yangxin6/Deformation3D.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腼腆的恶天完成签到,获得积分10
刚刚
糊涂的大门完成签到,获得积分10
1秒前
子乔发布了新的文献求助20
1秒前
1秒前
tsumu发布了新的文献求助10
2秒前
佳丽发布了新的文献求助10
2秒前
HLJ199132给HLJ199132的求助进行了留言
2秒前
11111发布了新的文献求助10
2秒前
2秒前
科研圣体发布了新的文献求助10
3秒前
舍我其谁发布了新的文献求助10
3秒前
不安的橘子完成签到,获得积分10
3秒前
3秒前
3秒前
orixero应助lxy采纳,获得10
4秒前
所所应助郭翔采纳,获得10
4秒前
赘婿应助GoodMorning采纳,获得10
4秒前
科研通AI2S应助cece采纳,获得10
4秒前
5秒前
6秒前
Megan发布了新的文献求助30
6秒前
受伤问凝完成签到 ,获得积分10
6秒前
充电宝应助黄小鸟2333采纳,获得10
6秒前
6秒前
南医医发布了新的文献求助10
6秒前
乐事薯片噢完成签到,获得积分10
7秒前
7秒前
7秒前
烟花应助afrex采纳,获得10
7秒前
smm完成签到 ,获得积分10
8秒前
勤劳的鸡完成签到,获得积分10
8秒前
8秒前
JamesPei应助清萍红檀采纳,获得10
8秒前
9秒前
辅助成灾完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
milly完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355