Maize stem–leaf segmentation framework based on deformable point clouds

点云 分割 计算机科学 人工智能 交叉口(航空) 模式识别(心理学) 地理 地图学
作者
Xin Yang,Miao Teng,Xueying Tian,Dabao Wang,Jianxiang Zhao,Lili Lin,Chao Zhu,Tao Yang,Tongyu Xu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 49-66
标识
DOI:10.1016/j.isprsjprs.2024.03.025
摘要

The efficacy of three-dimensional (3D) point clouds in studying crop morphological structures is based on their direct and accurate data presentation ability. With deep-learning integration, organ segmentation from point clouds could serve as the basis for tremendous advancements in organ-level phenotyping. However, despite the potential, the acquisition of a sufficient number of annotated plant point clouds for practical model training remains a major hurdle. To help overcome this limitation, we constructed a 3D point-cloud dataset specifically for maize stem–leaf segmentation encompassing 428 maize plants ranging from 2 to 12 leaves. We also developed a point cloud enhancement strategy that uses highly controllable deformations to improve the morphological diversity of the training set significantly, while preserving the local geometric features of organs. Our dataset supports the generation of abundant training data from a limited number of labelled data, and we also provide a segmentation framework based on the augmented data to validate the efficiency of our enhancement technique. Two labelled data items were randomly chosen from our plant dataset based on every leaf number, yielding 22 labelled data items total, to produce several deformed point clouds for training the PointNet++ semantic segmentation model, as well as the hierarchical aggregation for the 3D instant segmentation (HAIS) model. These models were tested on 406 datasets, where the PointNet++ model secured a 91.93 % mean intersection-over-union (mIoU) in semantic segmentation and the HAIS model obtained an 89.57 % mean average precision (mAP) in instance segmentation. Following post-processing, an instance segmentation result of 93.74 % mAP was achieved with the HAIS model. These findings demonstrate that our method allows for the efficient training of organ segmentation models with minimal labelled data input in a reduced timeframe. Moreover, it offers an effective tool for point-cloud parsing in maize phenotyping research. Our Maize dataset is available from https://github.com/syau-miao/SignleMaizePointCloudDataSet.git, and the source code of our method can be found at https://github.com/yangxin6/Deformation3D.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助nhscyhy采纳,获得10
1秒前
荼白完成签到 ,获得积分10
2秒前
风信子完成签到,获得积分20
2秒前
scoot完成签到 ,获得积分10
3秒前
雨中漫步完成签到,获得积分10
3秒前
Vroom完成签到,获得积分10
4秒前
李爱国应助十字入口采纳,获得10
4秒前
zhang完成签到,获得积分10
4秒前
ohh发布了新的文献求助10
4秒前
llbeyond完成签到,获得积分0
5秒前
5秒前
x1完成签到,获得积分10
5秒前
5秒前
6秒前
aaa完成签到,获得积分10
6秒前
6秒前
Angel完成签到 ,获得积分10
7秒前
小二郎应助憨憨小黄采纳,获得10
7秒前
oceanao应助1989采纳,获得10
7秒前
8秒前
8秒前
nhscyhy完成签到,获得积分20
9秒前
ZSJ发布了新的文献求助10
11秒前
嗷嗷嗷后发布了新的文献求助10
11秒前
尹姝完成签到,获得积分10
12秒前
33Svan发布了新的文献求助10
12秒前
Sekiro发布了新的文献求助10
12秒前
Ttt发布了新的文献求助10
13秒前
13秒前
HEIKU应助CMUSK采纳,获得10
13秒前
lonelymusic发布了新的文献求助30
14秒前
薛人英发布了新的文献求助20
14秒前
YRY完成签到 ,获得积分10
14秒前
MSQWE完成签到,获得积分10
14秒前
14秒前
舒适怀寒完成签到 ,获得积分10
14秒前
正直凌文完成签到 ,获得积分10
15秒前
mit完成签到 ,获得积分0
15秒前
OnMyWorldside完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158979
求助须知:如何正确求助?哪些是违规求助? 2810153
关于积分的说明 7886308
捐赠科研通 2468968
什么是DOI,文献DOI怎么找? 1314533
科研通“疑难数据库(出版商)”最低求助积分说明 630640
版权声明 602012