Efficient Machine Learning Model Focusing on Active Sites for the Discovery of Bifunctional Oxygen Electrocatalysts in Binary Alloys

双功能 材料科学 二进制数 合金 密度泛函理论 活动站点 氧气 工作(物理) 纳米技术 化学物理 计算机科学 催化作用 计算化学 热力学 物理 有机化学 冶金 化学 算术 数学 生物化学
作者
Chao Wang,Bing Wang,Changhao Wang,Zhipeng Chang,Mengqi Yang,Ru‐Zhi Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (13): 16050-16061 被引量:1
标识
DOI:10.1021/acsami.3c17377
摘要

The distinctive characteristics of alloy catalysts, encompassing composition, structure, and modifiable adsorption sites, present significant potential for the development of highly efficient electrocatalysts for oxygen evolution/reduction reactions [oxygen evolution reactions (OERs)/oxygen reduction reactions (ORRs)]. Machine learning (ML) methods can quickly establish the relationship between material features and catalytic activity, thus accelerating the development of alloy electrocatalysts. However, the current abundance of features presents a crucial challenge in selecting the most pertinent ones. In this study, we explored seven intrinsic features directly derived from the material's structure, with a specific focus on the chemical environment of active sites and their nearest neighbors. An accurate and efficient ML model to predict potential bifunctional oxygen electrocatalysts based on the intrinsic features of AB-type alloy active sites and intermediate free energies in the OERs/ORRs was established. These features possess clear physical and chemical meanings, closely linked to the electronic and geometric structures of active sites and neighboring atoms, thereby providing indispensable insights for the discovery of high-performance electrocatalysts. The ML model achieved R2 scores of 0.827, 0.913, and 0.711 for the predicted values of the three intermediate (OH, O, OOH) free energies, with corresponding mean absolute errors of 0.175, 0.242, and 0.200 eV, respectively. These results indicate that the ML model exhibits high accuracy in predicting the intermediate free energies. Furthermore, the ML model exhibited a prediction efficiency 150,000 times faster than traditional density functional theory calculations. This work will offer valuable insights and a framework for facilitating the rapid design of potential catalysts by ML methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助如果多年后采纳,获得10
刚刚
狂炫一大晚完成签到 ,获得积分10
1秒前
2秒前
刘璇1发布了新的文献求助10
2秒前
2秒前
2秒前
落后一一发布了新的文献求助10
4秒前
6秒前
重要手机发布了新的文献求助10
6秒前
科研通AI2S应助鹿冶采纳,获得10
7秒前
jyy发布了新的文献求助10
8秒前
11秒前
木子木子粒完成签到 ,获得积分10
12秒前
NexusExplorer应助YYY采纳,获得10
12秒前
13秒前
李lll完成签到,获得积分20
13秒前
SHIROKO完成签到,获得积分10
16秒前
1111发布了新的文献求助10
16秒前
zrr留下了新的社区评论
18秒前
heisa完成签到,获得积分10
18秒前
酷波er应助YUILI采纳,获得10
20秒前
Owen应助guozizi采纳,获得30
21秒前
jingjing-8995完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
上官若男应助云鹤采纳,获得10
23秒前
24秒前
24秒前
24秒前
无花果应助顾安安采纳,获得10
25秒前
包女士发布了新的文献求助10
26秒前
充电宝应助豆⑧采纳,获得10
26秒前
27秒前
万万想到了完成签到,获得积分10
27秒前
Ren发布了新的文献求助10
27秒前
小盒儿完成签到,获得积分10
28秒前
29秒前
花会发完成签到,获得积分20
30秒前
QR发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605