Contrast-enhanced dual-energy CT synthesis from single energy CT using diffusion model

数字增强无线通信 对比度(视觉) 核医学 计算机科学 放射科 人工智能 医学 无线 电信
作者
Yuan Gao,Huiqiao Xie,Chih‐Wei Chang,Junbo Peng,Jing Wang,Lei Qiu,Tonghe Wang,Beth Ghavidel,Justin Roper,Jun Zhou,Xiaofeng Yang
标识
DOI:10.1117/12.3008507
摘要

Dual-Energy CT (DECT) has risen to prominence as a valuable instrument in diagnostic imaging, boasting a range of clinical applications. Contrast-DECT (C-DECT) is particularly useful in clinical by generating iodine density map, which could benefit radiation oncologists in treatment planning process. However, DECT scanners are not widely equipped among the radiation therapy centers. Moreover, side effects from iodine agents restrict the use of DECT iodine contrast imaging for all patients. The purpose of this work is to generate synthetic C-DECT images based on non-contrast single-energy CT (SECT) via deep learning (DL) method. 108 head-and-neck cancer patients' images were retrospectively investigated in this work. All patients were scanned with non-contrast SECT and contrast DECT protocols. A conditional Denoising Diffusion Probalistic Model (DDPM) was implemented to generate synthetic High-energy CT (H-CT) and Low-energy CT (L-CT). The training and application dataset was separated strictly, 100 patients' data were used as the training dataset and the rest eight patients' data were used as the application dataset. The performance of the proposed method was evaluated with three quantitative metrics including Mean Absolute Error (MAE), Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR). For H-CT and L-CT, the quantitative evaluation results of MAE, SSIM and PSNR are 19.15±2.23 (HU) and 23.34±3.45 (HU), 0.74±0.13 and 0.75±0.19, 28.13±2.83 (dB) and 28.18±3.55 (dB), respectively. This approach holds potential significance for radiation therapy facilities lacking DECT scanners, as well as for specific patients who may not be suitable candidates for iodine agent injection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ws完成签到,获得积分10
刚刚
桐桐应助研友_5Zl9D8采纳,获得30
1秒前
1秒前
1秒前
852应助十一苗采纳,获得10
3秒前
5秒前
良辰应助明理茹嫣采纳,获得10
6秒前
7秒前
7秒前
123发布了新的文献求助10
8秒前
11秒前
sdniuidifod发布了新的文献求助10
12秒前
伊绵好完成签到,获得积分10
12秒前
Rue发布了新的文献求助10
13秒前
科研通AI5应助十三采纳,获得10
13秒前
善学以致用应助Xn采纳,获得10
14秒前
ding应助Xn采纳,获得30
14秒前
钟吾敷完成签到,获得积分20
14秒前
于于小鱼9完成签到,获得积分10
15秒前
所所应助涛涛烧饼大饼采纳,获得10
16秒前
充电宝应助涛涛烧饼大饼采纳,获得10
16秒前
lyyyy发布了新的文献求助10
16秒前
hh发布了新的文献求助10
16秒前
Hello应助欣喜黄蜂采纳,获得10
17秒前
醉熏的皮卡丘完成签到,获得积分10
18秒前
迟大猫应助123采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
22秒前
22秒前
良辰应助科研通管家采纳,获得10
22秒前
1412应助科研通管家采纳,获得10
22秒前
ygg应助科研通管家采纳,获得10
22秒前
良辰应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得20
22秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673916
求助须知:如何正确求助?哪些是违规求助? 3229353
关于积分的说明 9785316
捐赠科研通 2939948
什么是DOI,文献DOI怎么找? 1611486
邀请新用户注册赠送积分活动 760931
科研通“疑难数据库(出版商)”最低求助积分说明 736344