清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Intelligent Detection and Classification Model Based on Computer Vision for Pavement Cracks in Complicated Scenarios

计算机科学 人工智能 计算机视觉
作者
Yue Wang,Qingjie Qi,Lifeng Sun,Wenhao Xian,Tianfang Ma,Changjia Lu,Jingwen Zhang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (7): 2909-2909 被引量:2
标识
DOI:10.3390/app14072909
摘要

With the extension of road service life, cracks are the most significant type of pavement distress. To monitor road conditions and avoid excessive damage, pavement crack detection is absolutely necessary and an indispensable part of road periodic maintenance and performance assessment. The development and application of computer vision have provided modern methods for crack detection, which are low in cost, less labor-intensive, continuous, and timely. In this paper, an intelligent model based on a target detection algorithm in computer vision was proposed to accurately detect and classify four classes of cracks. Firstly, by vehicle-mounted camera capture, a dataset of pavement cracks with complicated backgrounds that are the most similar to actual scenarios was built, containing 4007 images and 7882 crack samples. Secondly, the YOLOv5 framework was improved from the four aspects of the detection layer, anchor box, neck structure, and cross-layer connection, and thereby the network’s feature extraction capability and small-sized-target detection performance were enhanced. Finally, the experimental results indicated that the proposed model attained an AP of the four classes of 81.75%, 83.81%, 98.20%, and 92.83%, respectively, and a mAP of 89.15%. In addition, the proposed model achieved a 2.20% missed detection rate, representing a 6.75% decrease over the original YOLOv5. These results demonstrated the effectiveness and practicality of our proposed model in addressing the issues of low accuracy and missed detection for small targets in the original network. Overall, the implementation of computer vision-based models in crack detection can promote the intellectualization of road maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滕皓轩完成签到 ,获得积分20
17秒前
蝎子莱莱xth完成签到,获得积分10
30秒前
氢锂钠钾铷铯钫完成签到,获得积分10
36秒前
Square完成签到,获得积分10
43秒前
45秒前
牛的滑发布了新的文献求助10
49秒前
Hello应助牛的滑采纳,获得10
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
Owen应助菜菜子采纳,获得10
1分钟前
1分钟前
菜菜子发布了新的文献求助10
1分钟前
zcbb完成签到,获得积分10
1分钟前
菜菜子完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
2分钟前
usami42完成签到,获得积分10
2分钟前
2分钟前
drirshad完成签到,获得积分10
2分钟前
无奈代秋完成签到,获得积分10
3分钟前
赘婿应助无奈代秋采纳,获得10
3分钟前
3分钟前
4分钟前
无奈代秋发布了新的文献求助10
4分钟前
Zhu完成签到 ,获得积分10
4分钟前
Yini应助科研通管家采纳,获得100
4分钟前
lzy完成签到,获得积分10
5分钟前
Akim应助科研通管家采纳,获得10
6分钟前
nbtzy完成签到,获得积分10
7分钟前
研友_拓跋戾完成签到,获得积分10
7分钟前
汉堡包应助研友_拓跋戾采纳,获得10
7分钟前
量子星尘发布了新的文献求助50
7分钟前
方白秋完成签到,获得积分0
7分钟前
8分钟前
ljl86400完成签到,获得积分10
8分钟前
星辰大海应助科研通管家采纳,获得10
8分钟前
多亿点完成签到 ,获得积分10
10分钟前
usami42发布了新的文献求助10
10分钟前
lovelife完成签到,获得积分10
11分钟前
开心每一天完成签到 ,获得积分10
11分钟前
披着羊皮的狼完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910339
求助须知:如何正确求助?哪些是违规求助? 4186233
关于积分的说明 12999210
捐赠科研通 3953640
什么是DOI,文献DOI怎么找? 2168011
邀请新用户注册赠送积分活动 1186464
关于科研通互助平台的介绍 1093597