An Intelligent Detection and Classification Model Based on Computer Vision for Pavement Cracks in Complicated Scenarios

计算机科学 人工智能 计算机视觉
作者
Yue Wang,Qingjie Qi,Lifeng Sun,Wenhao Xian,Tianfang Ma,Changjia Lu,Jingwen Zhang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (7): 2909-2909 被引量:2
标识
DOI:10.3390/app14072909
摘要

With the extension of road service life, cracks are the most significant type of pavement distress. To monitor road conditions and avoid excessive damage, pavement crack detection is absolutely necessary and an indispensable part of road periodic maintenance and performance assessment. The development and application of computer vision have provided modern methods for crack detection, which are low in cost, less labor-intensive, continuous, and timely. In this paper, an intelligent model based on a target detection algorithm in computer vision was proposed to accurately detect and classify four classes of cracks. Firstly, by vehicle-mounted camera capture, a dataset of pavement cracks with complicated backgrounds that are the most similar to actual scenarios was built, containing 4007 images and 7882 crack samples. Secondly, the YOLOv5 framework was improved from the four aspects of the detection layer, anchor box, neck structure, and cross-layer connection, and thereby the network’s feature extraction capability and small-sized-target detection performance were enhanced. Finally, the experimental results indicated that the proposed model attained an AP of the four classes of 81.75%, 83.81%, 98.20%, and 92.83%, respectively, and a mAP of 89.15%. In addition, the proposed model achieved a 2.20% missed detection rate, representing a 6.75% decrease over the original YOLOv5. These results demonstrated the effectiveness and practicality of our proposed model in addressing the issues of low accuracy and missed detection for small targets in the original network. Overall, the implementation of computer vision-based models in crack detection can promote the intellectualization of road maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然秋双完成签到 ,获得积分10
刚刚
dll完成签到 ,获得积分10
刚刚
diping发布了新的文献求助10
刚刚
tzj发布了新的文献求助10
2秒前
2秒前
zzz完成签到,获得积分10
2秒前
kkkk发布了新的文献求助10
2秒前
Nancy发布了新的文献求助10
2秒前
2秒前
小鲤鱼发布了新的文献求助10
3秒前
tigebnb发布了新的文献求助10
3秒前
dinglingling完成签到 ,获得积分10
3秒前
领导范儿应助学术垃圾采纳,获得10
4秒前
bai发布了新的文献求助10
4秒前
5秒前
5秒前
刘66666完成签到,获得积分10
5秒前
BDXNM发布了新的文献求助10
5秒前
共享精神应助明理楷瑞采纳,获得10
6秒前
soong发布了新的文献求助10
6秒前
6秒前
7秒前
科研通AI5应助阔达断缘采纳,获得10
7秒前
leave完成签到,获得积分10
7秒前
7秒前
大个应助Asriel采纳,获得10
7秒前
王焕然关注了科研通微信公众号
8秒前
8秒前
8秒前
Shen完成签到,获得积分10
8秒前
Cari发布了新的文献求助10
9秒前
我长了树完成签到,获得积分10
9秒前
LY完成签到,获得积分10
9秒前
文艺点点完成签到,获得积分10
9秒前
Andy完成签到,获得积分10
10秒前
小单王完成签到,获得积分10
10秒前
Shen发布了新的文献求助10
11秒前
Liniong关注了科研通微信公众号
11秒前
diping完成签到,获得积分10
11秒前
单纯行天完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575863
求助须知:如何正确求助?哪些是违规求助? 3995272
关于积分的说明 12368236
捐赠科研通 3669085
什么是DOI,文献DOI怎么找? 2022092
邀请新用户注册赠送积分活动 1056109
科研通“疑难数据库(出版商)”最低求助积分说明 943424