清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Analysis of coal mining accident risk factors based on text mining

煤矿开采 贝叶斯网络 关联规则学习 风险分析(工程) 事故(哲学) 风险管理 生产(经济) 工程类 计算机科学 数据挖掘 人工智能 业务 财务 哲学 认识论 废物管理 宏观经济学 经济
作者
Yiman He,Jizu Li
标识
DOI:10.1177/1748006x241245579
摘要

Frequently occurring coal mine safety accidents have caused great casualties and economic losses. Coal mine intelligence is the core technical support for the high-quality development of the coal industry. The deep integration of coal mining safety production management and Artificial Intelligence (AI) technology is practically significant to achieve accident prevention. To efficiently identify mining accident risk factors and explore mechanism of coupling between risk factors, this study mined 400 reported cases of mining accidents in Shanxi Province and identified 64 accident risk factors through custom, stopword, synonym dictionary construction, keyword extraction and keyword correlation analysis. Then, this study constructed association rules and a Bayesian causal network. The major risk factors are identified using a comprehensive high-frequency, sensitivity, strength and key path analysis of the Bayesian causal network. The following seven risk factors are found to play a major role in the occurrence of mine accidents: inadequate safety supervision, disordered safety management, illegal organization of production, inadequate staff safety education and training, operation against rules, command against rules and weak safety consciousness among the staff. Finally, a case study is conducted to validate the reliability of the results. This study solves the problem of incomplete extraction of key feature information in coal mine reports and the lack of analyses of coupling mechanisms between coal mine risk factors in traditional accident analysis methods, providing the methodological support for the effective use of unstructured coal mine safety production data for risk analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
HJJHJH完成签到,获得积分20
8秒前
HJJHJH发布了新的文献求助30
11秒前
汉堡包应助Nan采纳,获得10
12秒前
23秒前
Nan发布了新的文献求助10
27秒前
Nan驳回了李爱国应助
53秒前
ChenYX完成签到 ,获得积分10
53秒前
zhang完成签到,获得积分20
1分钟前
樱桃猴子应助白华苍松采纳,获得10
1分钟前
顺利的小蚂蚁完成签到,获得积分10
1分钟前
1分钟前
2分钟前
鱼太闲发布了新的文献求助10
2分钟前
Guo完成签到 ,获得积分10
2分钟前
小马甲应助鱼太闲采纳,获得10
2分钟前
2分钟前
单薄绮露完成签到,获得积分10
2分钟前
2分钟前
3分钟前
文艺猫咪发布了新的文献求助10
3分钟前
3分钟前
樱桃猴子应助白华苍松采纳,获得10
3分钟前
3分钟前
Nan发布了新的文献求助10
3分钟前
3分钟前
3分钟前
行走完成签到,获得积分10
3分钟前
马马马完成签到 ,获得积分10
4分钟前
4分钟前
小蘑菇应助文艺猫咪采纳,获得10
4分钟前
4分钟前
4分钟前
ChenYX发布了新的文献求助10
4分钟前
Lucas应助白华苍松采纳,获得10
4分钟前
4分钟前
雷九万班完成签到 ,获得积分0
4分钟前
5分钟前
青出于蓝蔡完成签到,获得积分10
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526577
求助须知:如何正确求助?哪些是违规求助? 3107022
关于积分的说明 9282092
捐赠科研通 2804617
什么是DOI,文献DOI怎么找? 1539534
邀请新用户注册赠送积分活动 716583
科研通“疑难数据库(出版商)”最低求助积分说明 709581