Parameter-efficient fine-tuning large language model approach for hospital discharge paper summarization

自动汇总 计算机科学 语言模型 钥匙(锁) 秩(图论) 点(几何) 数据科学 人工智能 自然语言处理 情报检索 计算机安全 几何学 数学 组合数学
作者
Joyeeta Goswami,Kaushal Kumar Prajapati,Ashim Saha,Apu Kumar Saha
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:157: 111531-111531 被引量:5
标识
DOI:10.1016/j.asoc.2024.111531
摘要

Text summarization in medical domain is one of the most crucial chores as it deals with the critical human information. Consequently the proper summarization and key point extraction from medical deeds using pre-trained Language models is now the key figure to be focused on for the researchers. But due to the considerable amount of real-world data and enormous amount of memory requirement to train the Large Language Models (LLMs), research on these models become challenging. To overcome these challenges multiple prompting and tuning techniques are being used. In this paper, effectiveness of prompt engineering and parameter efficient fine tuning is being studied to summarize the Hospital Discharge Summary (HDS) papers effectively, so that these models can accurately interprete medical terminologies and contexts, generate brief but compact summaries, and draw out concentrated themes, which opens new approaches for the application of LLMs in healthcare and making HDS more patient-friendly. In this research LLaMA 2 (Large Language Model Meta AI) has been considered as the base model. Also, the model has been fine-tuned using QLoRA (Quantized Low Rank Adapters), which can bring down the memory usage of LLMs without compromising the data quality. This study explores the way to use LLMs on HDS datasets without the hassle of memory usage using QLoRA, into electronic health record systems to further streamline the handling and retrieval of healthcare information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z2关注了科研通微信公众号
刚刚
123456发布了新的文献求助10
1秒前
桐桐应助周周采纳,获得10
2秒前
丘比特应助现实的曼安采纳,获得10
3秒前
3秒前
BowieHuang应助xll采纳,获得10
3秒前
LYJ发布了新的文献求助20
3秒前
3秒前
3秒前
4秒前
sissie关注了科研通微信公众号
4秒前
奋斗慕凝完成签到 ,获得积分10
4秒前
vivien发布了新的文献求助20
6秒前
6秒前
zho应助金开采纳,获得10
7秒前
7秒前
Leone发布了新的文献求助10
8秒前
240325完成签到,获得积分10
8秒前
9秒前
酷波er应助自觉的溪灵采纳,获得10
9秒前
9秒前
领导范儿应助yu采纳,获得30
10秒前
10秒前
10秒前
小小西瓜萝卜青菜完成签到,获得积分10
11秒前
可爱的函函应助勿忘心安采纳,获得10
12秒前
梦二完成签到,获得积分10
12秒前
Water完成签到 ,获得积分10
13秒前
aertom完成签到,获得积分10
13秒前
周周发布了新的文献求助10
13秒前
14秒前
14秒前
li完成签到,获得积分10
14秒前
Clarence0320发布了新的文献求助30
16秒前
Leone完成签到,获得积分10
16秒前
烟花应助12采纳,获得10
16秒前
kangkang完成签到,获得积分10
17秒前
可爱的函函应助vivien采纳,获得10
17秒前
昏睡的书双关注了科研通微信公众号
17秒前
明石塘小王完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589368
求助须知:如何正确求助?哪些是违规求助? 4674147
关于积分的说明 14791974
捐赠科研通 4628350
什么是DOI,文献DOI怎么找? 2532283
邀请新用户注册赠送积分活动 1500934
关于科研通互助平台的介绍 1468454