Parameter-efficient fine-tuning large language model approach for hospital discharge paper summarization

自动汇总 计算机科学 语言模型 钥匙(锁) 秩(图论) 点(几何) 数据科学 人工智能 自然语言处理 情报检索 计算机安全 几何学 数学 组合数学
作者
Joyeeta Goswami,Kaushal Kumar Prajapati,Ashim Saha,Apu Kumar Saha
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:157: 111531-111531 被引量:5
标识
DOI:10.1016/j.asoc.2024.111531
摘要

Text summarization in medical domain is one of the most crucial chores as it deals with the critical human information. Consequently the proper summarization and key point extraction from medical deeds using pre-trained Language models is now the key figure to be focused on for the researchers. But due to the considerable amount of real-world data and enormous amount of memory requirement to train the Large Language Models (LLMs), research on these models become challenging. To overcome these challenges multiple prompting and tuning techniques are being used. In this paper, effectiveness of prompt engineering and parameter efficient fine tuning is being studied to summarize the Hospital Discharge Summary (HDS) papers effectively, so that these models can accurately interprete medical terminologies and contexts, generate brief but compact summaries, and draw out concentrated themes, which opens new approaches for the application of LLMs in healthcare and making HDS more patient-friendly. In this research LLaMA 2 (Large Language Model Meta AI) has been considered as the base model. Also, the model has been fine-tuned using QLoRA (Quantized Low Rank Adapters), which can bring down the memory usage of LLMs without compromising the data quality. This study explores the way to use LLMs on HDS datasets without the hassle of memory usage using QLoRA, into electronic health record systems to further streamline the handling and retrieval of healthcare information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干太清完成签到,获得积分10
2秒前
3秒前
禾沐发布了新的文献求助10
4秒前
4秒前
小葵发布了新的文献求助10
5秒前
8秒前
张自从应助洁净的钢笔采纳,获得10
9秒前
10秒前
丰富无血发布了新的文献求助10
10秒前
桐桐应助大方的依琴采纳,获得10
12秒前
熹林向日葵完成签到,获得积分10
12秒前
tan发布了新的文献求助10
15秒前
晓梦发布了新的文献求助10
16秒前
18秒前
19秒前
烟花应助曦之南。采纳,获得10
20秒前
JamesPei应助彭洪凯采纳,获得50
20秒前
斯文败类应助勤奋怀蕊采纳,获得10
21秒前
传奇3应助刘刘采纳,获得10
22秒前
于安容完成签到,获得积分10
22秒前
丰富无血完成签到,获得积分20
24秒前
科研通AI2S应助洁净的钢笔采纳,获得10
24秒前
24秒前
24秒前
24秒前
tan完成签到,获得积分10
24秒前
动漫大师发布了新的文献求助30
26秒前
26秒前
27秒前
22发布了新的文献求助30
27秒前
28秒前
29秒前
在水一方应助追忆采纳,获得10
29秒前
轻松沛菡发布了新的文献求助30
30秒前
Brian完成签到,获得积分10
30秒前
31秒前
动漫大师发布了新的文献求助10
32秒前
33秒前
33秒前
悦耳的羽毛完成签到,获得积分10
34秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712466
求助须知:如何正确求助?哪些是违规求助? 3260652
关于积分的说明 9914800
捐赠科研通 2974269
什么是DOI,文献DOI怎么找? 1630836
邀请新用户注册赠送积分活动 773677
科研通“疑难数据库(出版商)”最低求助积分说明 744379