清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Radical Polymerization of Methylene Heterocyclic Compounds: Functional Polymer Synthesis and Applications

材料科学 亚甲基 聚合 聚合物 阳离子聚合 可逆加成-断裂链转移聚合 离子聚合 钴介导的自由基聚合 自由基聚合 高分子化学 有机化学 化学
作者
Zhuoqun Wang,Antoine Debuigne
出处
期刊:Polymer Reviews [Informa]
卷期号:63 (4): 805-851 被引量:1
标识
DOI:10.1080/15583724.2023.2181819
摘要

Synthetic polymers sustain a wide range of applications but the quest for further sophistication and functionalization of polymers remains topical to improve their scope and performance.In this respect, the radical polymerization of exo-methylene heterocyclic compounds (MHCs) is attractive.Compared to the classical acyclic vinyl monomers constrained to the vinyl-type polymerization process, MHCs can undergo different polymerization modes, namely the radical ring-retaining polymerization (rRRP) and the radical ring-opening polymerization (rROP).In rRRP, the cyclic group is preserved and inserted as side group of the polymer backbone offering a myriad of post-polymerization modifications whereas functional groups are incorporated within the backbone of linear polymers and confer them some degradability in rROP.Herein, recent advances in the radical polymerization of MHCs as well as the variety of macromolecular structures and applications it offers are highlighted.The reversible deactivation radical polymerization of MHCs leading to well-defined MHC-based macromolecular architectures, including multifunctional, stimuli-responsive and degradable polymers, is also discussed.The review emphasizes the current limitations of the radical polymerization of MHCs as well as future prospects including the development of innovative bio-based MHCs.Overall, the radical polymerization of MCHs represents a powerful macromolecular engineering tool and a broad field of exploration for polymer chemists.clothing, adhesives, etc, to highly engineered polymers applied in medical, electronic and photonic technologies, to name a few.After several decades of progress, efforts to make polymerization techniques more efficient, versatile and sustainable, remain timely owing the increasing demand for innovative functional polymers able to address the requirements of today's applications.Free radical polymerization (FRP) is one of the most widely used polymerization methods.It proceeds through a classic chain growth process and generates high molecular weight polymers.Its robustness, tolerance to moisture and high compatibility with many functional groups, make radical polymerization a tool of choice for producing synthetic polymers, especially in industry. 1However, the inherent irreversible termination reactions leading to illdefined structures prevent conventional FRP from being further used in cutting-edge applications which often require precise polymer architectures, predictable molecular weight and/or controlled chain-end functionalities.In the past decades, the limitations of conventional free radical polymerization have been overcome by the development of controlled radical polymerization, preferentially referred to as reversible deactivation radical polymerization (RDRP). 2 In the latter, a controlling agent allows the temporary deactivation of the propagating radicals in the form of a dormant species which limits the extent of irreversible reactions and prolongs the life time of radicals.In other words, a dynamic equilibrium rapidly establishes between a small amount of active radicals and a large amount of dormant species. 3In this case, fast and quantitative initiation reaction associated to a low propagation rate compared to the deactivation rate result in polymers with predictable molecular weights, low dispersity and high chain-end fidelity.This also paved the way to polymer with complex architectures including block, gradient, graft, star-shaped and telechelic copolymers to name a few.There are several RDRP techniques This is the authors' version of the article published in Polymer Reviews.Changes were made to this

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
1分钟前
2分钟前
Becky完成签到 ,获得积分10
3分钟前
jfc完成签到 ,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
CJY完成签到 ,获得积分10
3分钟前
Sunny完成签到,获得积分10
3分钟前
lululu完成签到 ,获得积分10
4分钟前
arsenal完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Ava应助科研通管家采纳,获得10
7分钟前
shhoing应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
DianaLee完成签到 ,获得积分10
8分钟前
背后访风完成签到 ,获得积分10
8分钟前
小熊同学完成签到 ,获得积分10
8分钟前
爱思考的小笨笨完成签到,获得积分10
9分钟前
muriel完成签到,获得积分0
9分钟前
如歌完成签到,获得积分10
9分钟前
Ava应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
王火火完成签到 ,获得积分10
9分钟前
毛毛完成签到,获得积分10
10分钟前
chenxiaofang完成签到 ,获得积分10
10分钟前
迷茫的一代完成签到,获得积分10
11分钟前
蝎子莱莱xth完成签到,获得积分10
11分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
11分钟前
Square完成签到,获得积分10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
小马甲应助科研通管家采纳,获得10
11分钟前
11分钟前
npknpk发布了新的文献求助10
11分钟前
gszy1975完成签到,获得积分10
12分钟前
Gryphon应助科研通管家采纳,获得10
13分钟前
轻松幼南完成签到 ,获得积分10
14分钟前
shhoing应助科研通管家采纳,获得10
15分钟前
npknpk完成签到,获得积分10
15分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561600
求助须知:如何正确求助?哪些是违规求助? 4646663
关于积分的说明 14678795
捐赠科研通 4588007
什么是DOI,文献DOI怎么找? 2517273
邀请新用户注册赠送积分活动 1490557
关于科研通互助平台的介绍 1461590