Radical Polymerization of Methylene Heterocyclic Compounds: Functional Polymer Synthesis and Applications

材料科学 亚甲基 聚合 聚合物 阳离子聚合 可逆加成-断裂链转移聚合 离子聚合 钴介导的自由基聚合 自由基聚合 高分子化学 有机化学 化学
作者
Zhuoqun Wang,Antoine Debuigne
出处
期刊:Polymer Reviews [Informa]
卷期号:63 (4): 805-851 被引量:1
标识
DOI:10.1080/15583724.2023.2181819
摘要

Synthetic polymers sustain a wide range of applications but the quest for further sophistication and functionalization of polymers remains topical to improve their scope and performance.In this respect, the radical polymerization of exo-methylene heterocyclic compounds (MHCs) is attractive.Compared to the classical acyclic vinyl monomers constrained to the vinyl-type polymerization process, MHCs can undergo different polymerization modes, namely the radical ring-retaining polymerization (rRRP) and the radical ring-opening polymerization (rROP).In rRRP, the cyclic group is preserved and inserted as side group of the polymer backbone offering a myriad of post-polymerization modifications whereas functional groups are incorporated within the backbone of linear polymers and confer them some degradability in rROP.Herein, recent advances in the radical polymerization of MHCs as well as the variety of macromolecular structures and applications it offers are highlighted.The reversible deactivation radical polymerization of MHCs leading to well-defined MHC-based macromolecular architectures, including multifunctional, stimuli-responsive and degradable polymers, is also discussed.The review emphasizes the current limitations of the radical polymerization of MHCs as well as future prospects including the development of innovative bio-based MHCs.Overall, the radical polymerization of MCHs represents a powerful macromolecular engineering tool and a broad field of exploration for polymer chemists.clothing, adhesives, etc, to highly engineered polymers applied in medical, electronic and photonic technologies, to name a few.After several decades of progress, efforts to make polymerization techniques more efficient, versatile and sustainable, remain timely owing the increasing demand for innovative functional polymers able to address the requirements of today's applications.Free radical polymerization (FRP) is one of the most widely used polymerization methods.It proceeds through a classic chain growth process and generates high molecular weight polymers.Its robustness, tolerance to moisture and high compatibility with many functional groups, make radical polymerization a tool of choice for producing synthetic polymers, especially in industry. 1However, the inherent irreversible termination reactions leading to illdefined structures prevent conventional FRP from being further used in cutting-edge applications which often require precise polymer architectures, predictable molecular weight and/or controlled chain-end functionalities.In the past decades, the limitations of conventional free radical polymerization have been overcome by the development of controlled radical polymerization, preferentially referred to as reversible deactivation radical polymerization (RDRP). 2 In the latter, a controlling agent allows the temporary deactivation of the propagating radicals in the form of a dormant species which limits the extent of irreversible reactions and prolongs the life time of radicals.In other words, a dynamic equilibrium rapidly establishes between a small amount of active radicals and a large amount of dormant species. 3In this case, fast and quantitative initiation reaction associated to a low propagation rate compared to the deactivation rate result in polymers with predictable molecular weights, low dispersity and high chain-end fidelity.This also paved the way to polymer with complex architectures including block, gradient, graft, star-shaped and telechelic copolymers to name a few.There are several RDRP techniques This is the authors' version of the article published in Polymer Reviews.Changes were made to this
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
至夏完成签到,获得积分10
1秒前
爱吃猫的鱼完成签到,获得积分10
2秒前
Severe发布了新的文献求助10
2秒前
RebeccaHe应助科研通管家采纳,获得20
4秒前
敏敏完成签到,获得积分10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
自由晓蕾发布了新的文献求助10
4秒前
哎呀完成签到,获得积分10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得20
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
杨等等应助科研通管家采纳,获得10
4秒前
火辣蛤蟆完成签到,获得积分10
4秒前
stuffmatter应助科研通管家采纳,获得50
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
Clover04应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
Lucas应助scigo采纳,获得10
5秒前
SONGYEZI发布了新的文献求助50
7秒前
谨慎的雨灵完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
爆米花应助123mmmm采纳,获得10
12秒前
俏皮芹完成签到,获得积分10
12秒前
独特背包完成签到,获得积分10
12秒前
云猫完成签到 ,获得积分10
12秒前
为为子完成签到 ,获得积分10
14秒前
坚定的向日葵应助EdwardKING采纳,获得10
14秒前
Severe完成签到,获得积分10
14秒前
我想开兰博完成签到 ,获得积分10
15秒前
自由晓蕾完成签到,获得积分10
16秒前
ymk发布了新的文献求助10
19秒前
19秒前
laura完成签到,获得积分10
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139810
求助须知:如何正确求助?哪些是违规求助? 2790682
关于积分的说明 7796255
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601176