A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment

分割 试验装置 百分位 骨骼肌 医学 人工智能 计算机科学 生物标志物 内科学 数学 统计 生物 生物化学
作者
Hao Shen,He Pin,Ren Ya,Zhengyong Huang,Shuluan Li,Guoshuai Wang,Minghua Cong,Dehong Luo,Dan Shao,Elaine Yuen-Phin Lee,Ruixue Cui,Li Huo,Jing Qin,Jun Liu,Zhanli Hu,Zhou Liu,Na Zhang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (3): 1384-1398 被引量:12
标识
DOI:10.21037/qims-22-330
摘要

Quantitative muscle and fat data obtained through body composition analysis are expected to be a new stable biomarker for the early and accurate prediction of treatment-related toxicity, treatment response, and prognosis in patients with lung cancer. The use of these biomarkers can enable the adjustment of individualized treatment regimens in a timely manner, which is critical to further improving patient prognosis and quality of life. We aimed to develop a deep learning model based on attention for fully automated segmentation of the abdomen from computed tomography (CT) to quantify body composition.A fully automatic segmentation deep learning model was designed based on the attention mechanism and using U-Net as the framework. Subcutaneous fat, skeletal muscle, and visceral fat were manually segmented by two experts to serve as ground truth labels. The performance of the model was evaluated using Dice similarity coefficients (DSCs) and Hausdorff distance at 95th percentile (HD95).The mean DSC for subcutaneous fat and skeletal muscle were high for both the enhanced CT test set (0.93±0.06 and 0.96±0.02, respectively) and the plain CT test set (0.90±0.09 and 0.95±0.01, respectively). Nevertheless, the model did not perform well in the segmentation performance of visceral fat, especially for the enhanced CT test set. The mean DSC for the enhanced CT test set was 0.87±0.11, while the mean DSC for the plain CT test set was 0.92±0.03. We discuss the reasons for this result.This work demonstrates a method for the automatic outlining of subcutaneous fat, skeletal muscle, and visceral fat areas at L3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨季完成签到,获得积分10
2秒前
2秒前
Orange应助酷酷三问采纳,获得10
3秒前
花生糕完成签到,获得积分10
4秒前
李爱国应助ashenliu采纳,获得10
7秒前
汤泽琪发布了新的文献求助30
7秒前
10秒前
YanZhe完成签到,获得积分10
12秒前
汤泽琪完成签到,获得积分10
12秒前
yyds应助合适山蝶采纳,获得50
13秒前
14秒前
如不二发布了新的文献求助10
16秒前
迅速大白完成签到 ,获得积分10
16秒前
16秒前
Ice_zhao完成签到,获得积分10
17秒前
cowmoon完成签到 ,获得积分10
17秒前
WWWUBING完成签到,获得积分10
19秒前
ShellyMaya完成签到 ,获得积分10
20秒前
优雅含灵发布了新的文献求助10
20秒前
自由可兰完成签到 ,获得积分10
20秒前
21秒前
24秒前
Akim应助宋明阳采纳,获得10
26秒前
石会发发布了新的文献求助20
26秒前
27秒前
量子星尘发布了新的文献求助10
29秒前
如不二完成签到,获得积分20
29秒前
坦率白竹完成签到,获得积分10
31秒前
Chenxi完成签到 ,获得积分10
35秒前
云漪发布了新的文献求助10
36秒前
NexusExplorer应助小翼采纳,获得10
36秒前
徐涵完成签到 ,获得积分10
37秒前
38秒前
NexusExplorer应助xiaohei采纳,获得10
38秒前
石会发完成签到,获得积分20
42秒前
chenling完成签到,获得积分10
42秒前
zzmax完成签到,获得积分10
43秒前
科目三应助辛德瑞拉采纳,获得10
43秒前
量子星尘发布了新的文献求助10
43秒前
干鞅发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426028
求助须知:如何正确求助?哪些是违规求助? 4539733
关于积分的说明 14170371
捐赠科研通 4457563
什么是DOI,文献DOI怎么找? 2444607
邀请新用户注册赠送积分活动 1435561
关于科研通互助平台的介绍 1412955