A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment

分割 试验装置 百分位 骨骼肌 医学 人工智能 计算机科学 生物标志物 内科学 数学 统计 生物 生物化学
作者
Hao Shen,He Pin,Ren Ya,Zhengyong Huang,Shuluan Li,Guoshuai Wang,Minghua Cong,Dehong Luo,Dan Shao,Elaine Yuen-Phin Lee,Ruixue Cui,Li Huo,Jing Qin,Jun Liu,Zhanli Hu,Zhou Liu,Na Zhang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (3): 1384-1398 被引量:12
标识
DOI:10.21037/qims-22-330
摘要

Quantitative muscle and fat data obtained through body composition analysis are expected to be a new stable biomarker for the early and accurate prediction of treatment-related toxicity, treatment response, and prognosis in patients with lung cancer. The use of these biomarkers can enable the adjustment of individualized treatment regimens in a timely manner, which is critical to further improving patient prognosis and quality of life. We aimed to develop a deep learning model based on attention for fully automated segmentation of the abdomen from computed tomography (CT) to quantify body composition.A fully automatic segmentation deep learning model was designed based on the attention mechanism and using U-Net as the framework. Subcutaneous fat, skeletal muscle, and visceral fat were manually segmented by two experts to serve as ground truth labels. The performance of the model was evaluated using Dice similarity coefficients (DSCs) and Hausdorff distance at 95th percentile (HD95).The mean DSC for subcutaneous fat and skeletal muscle were high for both the enhanced CT test set (0.93±0.06 and 0.96±0.02, respectively) and the plain CT test set (0.90±0.09 and 0.95±0.01, respectively). Nevertheless, the model did not perform well in the segmentation performance of visceral fat, especially for the enhanced CT test set. The mean DSC for the enhanced CT test set was 0.87±0.11, while the mean DSC for the plain CT test set was 0.92±0.03. We discuss the reasons for this result.This work demonstrates a method for the automatic outlining of subcutaneous fat, skeletal muscle, and visceral fat areas at L3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
别那么晚睡完成签到,获得积分10
刚刚
刚刚
MXL发布了新的文献求助10
刚刚
刚刚
归期发布了新的文献求助10
1秒前
桐桐应助欣喜梦蕊采纳,获得10
1秒前
1秒前
1秒前
1秒前
读研读到发疯关注了科研通微信公众号
1秒前
2秒前
fedehe发布了新的文献求助10
2秒前
2秒前
djx发布了新的文献求助10
2秒前
2秒前
希望天下0贩的0应助forever采纳,获得10
2秒前
可可完成签到,获得积分10
2秒前
孙行行发布了新的文献求助10
2秒前
田様应助仲侣弥月采纳,获得10
2秒前
SG发布了新的文献求助10
3秒前
汉堡肉应助小越越采纳,获得10
3秒前
3秒前
yadikar发布了新的文献求助10
3秒前
龙晴发布了新的文献求助10
4秒前
情怀应助花砸采纳,获得10
4秒前
无极微光应助星期日采纳,获得20
4秒前
华仔应助欣欣欣然采纳,获得10
4秒前
陈浩浪发布了新的文献求助10
4秒前
无辜丹翠发布了新的文献求助10
5秒前
上官若男应助搞怪小凡采纳,获得10
5秒前
甄幻梦完成签到,获得积分10
5秒前
打工科研完成签到 ,获得积分10
5秒前
5秒前
琉璃完成签到,获得积分10
5秒前
5秒前
5秒前
酷波er应助炙热的灵薇采纳,获得10
6秒前
充电宝应助桑尼号采纳,获得10
6秒前
Nancy发布了新的文献求助10
6秒前
顾矜应助LJY采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707