A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment

分割 试验装置 百分位 骨骼肌 医学 人工智能 计算机科学 生物标志物 内科学 数学 统计 生物 生物化学
作者
Hao Shen,He Pin,Ren Ya,Zhengyong Huang,Shuluan Li,Guoshuai Wang,Minghua Cong,Dehong Luo,Dan Shao,Elaine Yuen-Phin Lee,Ruixue Cui,Li Huo,Jing Qin,Jun Liu,Zhanli Hu,Zhou Liu,Na Zhang
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (3): 1384-1398 被引量:12
标识
DOI:10.21037/qims-22-330
摘要

Quantitative muscle and fat data obtained through body composition analysis are expected to be a new stable biomarker for the early and accurate prediction of treatment-related toxicity, treatment response, and prognosis in patients with lung cancer. The use of these biomarkers can enable the adjustment of individualized treatment regimens in a timely manner, which is critical to further improving patient prognosis and quality of life. We aimed to develop a deep learning model based on attention for fully automated segmentation of the abdomen from computed tomography (CT) to quantify body composition.A fully automatic segmentation deep learning model was designed based on the attention mechanism and using U-Net as the framework. Subcutaneous fat, skeletal muscle, and visceral fat were manually segmented by two experts to serve as ground truth labels. The performance of the model was evaluated using Dice similarity coefficients (DSCs) and Hausdorff distance at 95th percentile (HD95).The mean DSC for subcutaneous fat and skeletal muscle were high for both the enhanced CT test set (0.93±0.06 and 0.96±0.02, respectively) and the plain CT test set (0.90±0.09 and 0.95±0.01, respectively). Nevertheless, the model did not perform well in the segmentation performance of visceral fat, especially for the enhanced CT test set. The mean DSC for the enhanced CT test set was 0.87±0.11, while the mean DSC for the plain CT test set was 0.92±0.03. We discuss the reasons for this result.This work demonstrates a method for the automatic outlining of subcutaneous fat, skeletal muscle, and visceral fat areas at L3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助负责冰烟采纳,获得10
3秒前
栖梧砚客完成签到,获得积分10
3秒前
TanFT发布了新的文献求助10
4秒前
avaig完成签到,获得积分10
5秒前
ChiariRay发布了新的文献求助10
6秒前
huyz发布了新的文献求助10
7秒前
fat完成签到,获得积分10
9秒前
辉辉028完成签到,获得积分10
9秒前
江梦松完成签到,获得积分10
9秒前
小冉不熬夜完成签到 ,获得积分10
10秒前
斯文败类应助TanFT采纳,获得10
11秒前
马华化完成签到,获得积分0
12秒前
亵渎完成签到,获得积分10
13秒前
大模型应助ChiariRay采纳,获得10
14秒前
南宫士晋完成签到 ,获得积分10
15秒前
heyl发布了新的文献求助30
16秒前
西原的橙果完成签到,获得积分10
16秒前
18秒前
ZhouZhou发布了新的文献求助10
20秒前
小火苗发布了新的文献求助10
20秒前
难过小懒虫完成签到,获得积分10
21秒前
22秒前
负责冰烟发布了新的文献求助10
23秒前
23秒前
24秒前
ajing完成签到,获得积分10
24秒前
26秒前
峪星发布了新的文献求助10
26秒前
zhao发布了新的文献求助10
27秒前
兴奋芷完成签到,获得积分10
28秒前
阿楊发布了新的文献求助10
28秒前
29秒前
辉辉028发布了新的文献求助10
31秒前
31秒前
舒服的牛排完成签到,获得积分10
31秒前
huihui完成签到,获得积分10
32秒前
lllm完成签到,获得积分10
32秒前
33秒前
zhangruiii完成签到 ,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324