Prediction of heat generation effect on force torque and mechanical properties at varying tool rotational speed in friction stir welding using Artificial Neural Network

转速 材料科学 搅拌摩擦焊 焊接 极限抗拉强度 扭矩 发热 复合材料 微观结构 扫描电子显微镜 摩擦焊接 粒度 冶金 机械工程 工程类 物理 热力学
作者
Sanjeev Kumar,Manoj Kumar Triveni,Jitendra Kumar Katiyar,Tameshwer Nath Tiwari,Barnik Saha Roy
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:: 095440622311557-095440622311557
标识
DOI:10.1177/09544062231155737
摘要

Friction stir welding (FSW) has played a significant role in joining aerospace alloys. During this process, the tool rotational (TRS) speed has been found to significantly affect heat generation compared to other parameters. Therefore, the study has investigated the effect of heat generation on force-torque and mechanical properties at different tool rotational speeds (TRS) in the FSW process through experimentation followed by Artificial Neural Network (ANN) technique. Further, the influence of different TRS ranging between 600 and 1800 rpm with an increment of 400 rpm on considered responses; namely thermal weld cycle, microstructure, and grain distribution in nugget zone (NZ) for 2050-T84 Al-Cu-Li alloy plates, welded using FSW were also investigated. It is observed that the vertically downward force (Z-force), longitudinal force (X-force), and spindle torque (Sp. T) decrease with increasing TRS. It is also observed an increasing (up to 1400 rpm) and then decreasing trend for tensile strength and hardness of welded samples. Moreover, the generation of frictional heat and grain size in NZ is increased with increasing TRS from 600 to 1800 rpm. However, the scanning electron microscope (SEM) micrographs of all-welded samples revealed a ductile mode of tensile fracture. Furthermore, the obtained experimental results were validated using the ANN technique. A quite better agreement has been established among the predicted outcomes from ANN with experimental results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI2S应助震动的忆南采纳,获得10
1秒前
思源应助阿治采纳,获得10
1秒前
2秒前
可靠的南露完成签到,获得积分10
2秒前
2秒前
asd发布了新的文献求助30
3秒前
3秒前
cen发布了新的文献求助10
4秒前
傅宛白发布了新的文献求助10
4秒前
5秒前
huizi发布了新的文献求助10
5秒前
6秒前
8秒前
9秒前
9秒前
平淡菲音发布了新的文献求助30
11秒前
小木匠完成签到,获得积分20
11秒前
开朗的戎发布了新的文献求助10
11秒前
11秒前
所所应助姁姁采纳,获得10
12秒前
Caesar发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助lhz采纳,获得10
13秒前
可爱的函函应助lhz采纳,获得10
13秒前
14秒前
Pheonix1998发布了新的文献求助10
15秒前
英姑应助yydtly采纳,获得10
15秒前
哈哈哈发布了新的文献求助10
16秒前
17秒前
烟花应助12345上山打老虎采纳,获得10
17秒前
19秒前
huizi完成签到,获得积分10
19秒前
michael_suo完成签到,获得积分10
19秒前
打打应助iwersonshmtu采纳,获得10
19秒前
Caesar完成签到,获得积分20
20秒前
物理苟发布了新的文献求助20
20秒前
20秒前
20秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264787
求助须知:如何正确求助?哪些是违规求助? 2904721
关于积分的说明 8331423
捐赠科研通 2575088
什么是DOI,文献DOI怎么找? 1399642
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633296