Prediction of heat generation effect on force torque and mechanical properties at varying tool rotational speed in friction stir welding using Artificial Neural Network

转速 材料科学 搅拌摩擦焊 焊接 极限抗拉强度 扭矩 发热 复合材料 微观结构 扫描电子显微镜 摩擦焊接 粒度 冶金 机械工程 工程类 物理 热力学
作者
Sanjeev Kumar,Manoj Kumar Triveni,Jitendra Kumar Katiyar,Tameshwer Nath Tiwari,Barnik Saha Roy
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:: 095440622311557-095440622311557
标识
DOI:10.1177/09544062231155737
摘要

Friction stir welding (FSW) has played a significant role in joining aerospace alloys. During this process, the tool rotational (TRS) speed has been found to significantly affect heat generation compared to other parameters. Therefore, the study has investigated the effect of heat generation on force-torque and mechanical properties at different tool rotational speeds (TRS) in the FSW process through experimentation followed by Artificial Neural Network (ANN) technique. Further, the influence of different TRS ranging between 600 and 1800 rpm with an increment of 400 rpm on considered responses; namely thermal weld cycle, microstructure, and grain distribution in nugget zone (NZ) for 2050-T84 Al-Cu-Li alloy plates, welded using FSW were also investigated. It is observed that the vertically downward force (Z-force), longitudinal force (X-force), and spindle torque (Sp. T) decrease with increasing TRS. It is also observed an increasing (up to 1400 rpm) and then decreasing trend for tensile strength and hardness of welded samples. Moreover, the generation of frictional heat and grain size in NZ is increased with increasing TRS from 600 to 1800 rpm. However, the scanning electron microscope (SEM) micrographs of all-welded samples revealed a ductile mode of tensile fracture. Furthermore, the obtained experimental results were validated using the ANN technique. A quite better agreement has been established among the predicted outcomes from ANN with experimental results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pi完成签到 ,获得积分20
刚刚
发嗲的忆寒完成签到,获得积分10
刚刚
爆米花应助通~采纳,获得10
刚刚
333完成签到 ,获得积分10
1秒前
MES完成签到,获得积分10
1秒前
糊弄学专家完成签到,获得积分10
1秒前
852应助ccyrichard采纳,获得10
2秒前
2秒前
2秒前
噜噜噜噜噜完成签到,获得积分10
3秒前
leez完成签到,获得积分10
3秒前
hohokuz发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
赘婿应助mrmrer采纳,获得10
5秒前
5秒前
赘婿应助三九采纳,获得10
5秒前
6秒前
6秒前
GEeZiii发布了新的文献求助10
6秒前
6秒前
7777777发布了新的文献求助10
6秒前
研友_nv2r4n发布了新的文献求助10
6秒前
Bman完成签到,获得积分10
7秒前
sakurai应助愤怒的寄琴采纳,获得10
7秒前
迟大猫应助简单的银耳汤采纳,获得10
7秒前
Owen应助LJL采纳,获得10
7秒前
8秒前
cwn完成签到,获得积分10
8秒前
zhuzhu完成签到,获得积分0
8秒前
丘比特应助彩色的蓝天采纳,获得10
8秒前
ChoccyPasta完成签到,获得积分10
9秒前
9秒前
感动的冬云完成签到,获得积分10
9秒前
嘤嘤嘤发布了新的文献求助10
10秒前
wuhaixia完成签到,获得积分10
10秒前
正版DY完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794