Artificial Intelligence Enables Quantitative Assessment of Ulcerative Colitis Histology

溃疡性结肠炎 医学 组织学 病理 H&E染色 炎症性肠病 分级(工程) 疾病 人工智能 放射科 染色 计算机科学 生物 生态学
作者
Fedaa Najdawi,Kathleen Sucipto,Pratik Mistry,Stephanie Hennek,Christina Jayson,Mary Lin,Darren Fahy,Shawn Kinsey,Ilan Wapinski,Andrew H. Beck,Murray B. Resnick,Archit Khosla,Michael G. Drage
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (6): 100124-100124 被引量:15
标识
DOI:10.1016/j.modpat.2023.100124
摘要

Ulcerative colitis is a chronic inflammatory bowel disease that is characterized by a relapsing and remitting course. Assessment of disease activity critically informs treatment decisions. In addition to endoscopic remission, histologic remission is emerging as a treatment target and a key factor in the evaluation of disease activity and therapeutic efficacy. However, manual pathologist evaluation is semiquantitative and limited in granularity. Machine learning approaches are increasingly being developed to aid pathologists in accurate and reproducible scoring of histology, enabling precise quantitation of clinically relevant features. Here, we report the development and validation of convolutional neural network models that quantify histologic features pertinent to ulcerative colitis disease activity, directly from hematoxylin and eosin-stained whole slide images. Tissue and cell model predictions were used to generate quantitative human-interpretable features to fully characterize the histology samples. Tissue and cell predictions showed comparable agreement to pathologist annotations, and the extracted slide-level human-interpretable features demonstrated strong correlations with disease severity and pathologist-assigned Nancy histological index scores. Moreover, using a random forest classifier based on 13 human-interpretable features derived from the tissue and cell models, we were able to accurately predict Nancy histological index scores, with a weighted kappa (κ = 0.91) and Spearman correlation (⍴ = 0.89, P < .001) when compared with pathologist consensus Nancy histological index scores. We were also able to predict histologic remission, based on the absence of neutrophil extravasation, with a high accuracy of 0.97. This work demonstrates the potential of computer vision to enable a standardized and robust assessment of ulcerative colitis histopathology for translational research and improved evaluation of disease activity and prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩小蘑菇完成签到 ,获得积分10
1秒前
sniper完成签到 ,获得积分10
3秒前
guobin完成签到 ,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
矮冬瓜完成签到 ,获得积分10
7秒前
13秒前
xiaoyi完成签到 ,获得积分10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
开心浩阑应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
开心浩阑应助科研通管家采纳,获得10
17秒前
开心浩阑应助科研通管家采纳,获得10
17秒前
开心浩阑应助科研通管家采纳,获得10
17秒前
踏实的盼秋完成签到 ,获得积分10
17秒前
Su完成签到 ,获得积分10
19秒前
激动的xx完成签到 ,获得积分10
20秒前
8D完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
牛仔完成签到 ,获得积分10
27秒前
老驴拉磨完成签到 ,获得积分10
28秒前
sponge完成签到 ,获得积分10
29秒前
zhang完成签到 ,获得积分10
32秒前
喝橙汁儿吗完成签到 ,获得积分10
32秒前
leibaozun完成签到 ,获得积分10
34秒前
Julie完成签到 ,获得积分10
35秒前
微笑芒果完成签到 ,获得积分0
36秒前
简爱完成签到 ,获得积分10
38秒前
falling_learning完成签到 ,获得积分10
38秒前
Ttttracy完成签到 ,获得积分10
41秒前
浮游应助guobin采纳,获得10
43秒前
熊雅完成签到,获得积分10
47秒前
烟花应助dhfify采纳,获得10
48秒前
量子星尘发布了新的文献求助10
50秒前
乐枫完成签到 ,获得积分10
54秒前
君儿和闪电完成签到 ,获得积分10
56秒前
南星完成签到 ,获得积分10
56秒前
曦子完成签到 ,获得积分10
58秒前
魁梧的衫完成签到 ,获得积分10
59秒前
CJW完成签到 ,获得积分10
59秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771649
捐赠科研通 4615679
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575