Artificial Intelligence Enables Quantitative Assessment of Ulcerative Colitis Histology

溃疡性结肠炎 医学 组织学 病理 H&E染色 炎症性肠病 分级(工程) 疾病 人工智能 放射科 染色 计算机科学 生物 生态学
作者
Fedaa Najdawi,Kathleen Sucipto,Pratik Mistry,Stephanie Hennek,Christina Jayson,Mary Lin,Darren Fahy,Shawn Kinsey,Ilan Wapinski,Andrew H. Beck,Murray B. Resnick,Archit Khosla,Michael G. Drage
出处
期刊:Modern Pathology [Elsevier BV]
卷期号:36 (6): 100124-100124 被引量:15
标识
DOI:10.1016/j.modpat.2023.100124
摘要

Ulcerative colitis is a chronic inflammatory bowel disease that is characterized by a relapsing and remitting course. Assessment of disease activity critically informs treatment decisions. In addition to endoscopic remission, histologic remission is emerging as a treatment target and a key factor in the evaluation of disease activity and therapeutic efficacy. However, manual pathologist evaluation is semiquantitative and limited in granularity. Machine learning approaches are increasingly being developed to aid pathologists in accurate and reproducible scoring of histology, enabling precise quantitation of clinically relevant features. Here, we report the development and validation of convolutional neural network models that quantify histologic features pertinent to ulcerative colitis disease activity, directly from hematoxylin and eosin-stained whole slide images. Tissue and cell model predictions were used to generate quantitative human-interpretable features to fully characterize the histology samples. Tissue and cell predictions showed comparable agreement to pathologist annotations, and the extracted slide-level human-interpretable features demonstrated strong correlations with disease severity and pathologist-assigned Nancy histological index scores. Moreover, using a random forest classifier based on 13 human-interpretable features derived from the tissue and cell models, we were able to accurately predict Nancy histological index scores, with a weighted kappa (κ = 0.91) and Spearman correlation (⍴ = 0.89, P < .001) when compared with pathologist consensus Nancy histological index scores. We were also able to predict histologic remission, based on the absence of neutrophil extravasation, with a high accuracy of 0.97. This work demonstrates the potential of computer vision to enable a standardized and robust assessment of ulcerative colitis histopathology for translational research and improved evaluation of disease activity and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌大滨州完成签到,获得积分10
1秒前
无心的闭月完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
zfr662完成签到,获得积分10
3秒前
3秒前
Ywffffff发布了新的文献求助10
4秒前
NexusExplorer应助淡淡的寻凝采纳,获得10
4秒前
可爱的函函应助tamaco采纳,获得10
5秒前
6秒前
英姑应助科研通管家采纳,获得10
7秒前
lyh发布了新的文献求助10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
lishiwei发布了新的文献求助10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
Dean应助科研通管家采纳,获得50
7秒前
Dean应助科研通管家采纳,获得50
7秒前
Lucas应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
8秒前
微笑向卉发布了新的文献求助10
8秒前
8秒前
啾啾发布了新的文献求助10
9秒前
曾经沛容关注了科研通微信公众号
11秒前
Lucas应助www什么采纳,获得10
11秒前
流云发布了新的文献求助10
11秒前
12秒前
李乔完成签到,获得积分10
12秒前
13秒前
一木完成签到,获得积分10
13秒前
汉堡包应助wuuw采纳,获得10
13秒前
李健应助lyh采纳,获得10
14秒前
三年半完成签到,获得积分10
14秒前
14秒前
小金星星发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088395
求助须知:如何正确求助?哪些是违规求助? 4303286
关于积分的说明 13410954
捐赠科研通 4129075
什么是DOI,文献DOI怎么找? 2261109
邀请新用户注册赠送积分活动 1265259
关于科研通互助平台的介绍 1199722