Artificial Intelligence Enables Quantitative Assessment of Ulcerative Colitis Histology

溃疡性结肠炎 医学 组织学 病理 H&E染色 炎症性肠病 分级(工程) 疾病 人工智能 放射科 染色 计算机科学 生物 生态学
作者
Fedaa Najdawi,Kathleen Sucipto,Pratik Mistry,Stephanie Hennek,Christina Jayson,Mary Lin,Darren Fahy,Shawn Kinsey,Ilan Wapinski,Andrew H. Beck,Murray B. Resnick,Archit Khosla,Michael G. Drage
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (6): 100124-100124 被引量:15
标识
DOI:10.1016/j.modpat.2023.100124
摘要

Ulcerative colitis is a chronic inflammatory bowel disease that is characterized by a relapsing and remitting course. Assessment of disease activity critically informs treatment decisions. In addition to endoscopic remission, histologic remission is emerging as a treatment target and a key factor in the evaluation of disease activity and therapeutic efficacy. However, manual pathologist evaluation is semiquantitative and limited in granularity. Machine learning approaches are increasingly being developed to aid pathologists in accurate and reproducible scoring of histology, enabling precise quantitation of clinically relevant features. Here, we report the development and validation of convolutional neural network models that quantify histologic features pertinent to ulcerative colitis disease activity, directly from hematoxylin and eosin-stained whole slide images. Tissue and cell model predictions were used to generate quantitative human-interpretable features to fully characterize the histology samples. Tissue and cell predictions showed comparable agreement to pathologist annotations, and the extracted slide-level human-interpretable features demonstrated strong correlations with disease severity and pathologist-assigned Nancy histological index scores. Moreover, using a random forest classifier based on 13 human-interpretable features derived from the tissue and cell models, we were able to accurately predict Nancy histological index scores, with a weighted kappa (κ = 0.91) and Spearman correlation (⍴ = 0.89, P < .001) when compared with pathologist consensus Nancy histological index scores. We were also able to predict histologic remission, based on the absence of neutrophil extravasation, with a high accuracy of 0.97. This work demonstrates the potential of computer vision to enable a standardized and robust assessment of ulcerative colitis histopathology for translational research and improved evaluation of disease activity and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧瑟阿么发布了新的文献求助10
1秒前
书晨发布了新的文献求助10
3秒前
情怀应助YHF2采纳,获得10
3秒前
天道酬勤完成签到,获得积分10
4秒前
研友_VZG7GZ应助Liqy采纳,获得10
4秒前
周周完成签到,获得积分10
4秒前
呆瓜发布了新的文献求助10
4秒前
乐天派完成签到,获得积分10
7秒前
夏来应助周凡淇采纳,获得10
9秒前
完美的天空应助周凡淇采纳,获得30
9秒前
蜜桃乌龙不闹乌龙完成签到,获得积分10
9秒前
我闯入猫的城镇完成签到,获得积分20
10秒前
waddles完成签到 ,获得积分10
13秒前
binz完成签到,获得积分10
14秒前
9209完成签到 ,获得积分10
15秒前
16秒前
可爱的函函应助呆瓜采纳,获得10
16秒前
17秒前
17秒前
17秒前
18秒前
叮咚驳回了李健应助
19秒前
20秒前
MPJ.发布了新的文献求助10
21秒前
22秒前
22秒前
Liqy发布了新的文献求助10
22秒前
传奇3应助HXXXY采纳,获得10
22秒前
无端发布了新的文献求助10
23秒前
bfz50发布了新的文献求助10
23秒前
24秒前
SYX发布了新的文献求助10
25秒前
25秒前
Lucas应助yuan采纳,获得10
25秒前
qq发布了新的文献求助10
26秒前
26秒前
charatanfeng发布了新的文献求助10
29秒前
含灵巨贼发布了新的文献求助10
29秒前
30秒前
zm发布了新的文献求助10
30秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129756
求助须知:如何正确求助?哪些是违规求助? 2780520
关于积分的说明 7748718
捐赠科研通 2435880
什么是DOI,文献DOI怎么找? 1294326
科研通“疑难数据库(出版商)”最低求助积分说明 623670
版权声明 600570