Artificial Intelligence Enables Quantitative Assessment of Ulcerative Colitis Histology

溃疡性结肠炎 医学 组织学 病理 H&E染色 炎症性肠病 分级(工程) 疾病 人工智能 放射科 染色 计算机科学 生物 生态学
作者
Fedaa Najdawi,Kathleen Sucipto,Pratik Mistry,Stephanie Hennek,Christina Jayson,Mary Lin,Darren Fahy,Shawn Kinsey,Ilan Wapinski,Andrew H. Beck,Murray B. Resnick,Archit Khosla,Michael G. Drage
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (6): 100124-100124 被引量:15
标识
DOI:10.1016/j.modpat.2023.100124
摘要

Ulcerative colitis is a chronic inflammatory bowel disease that is characterized by a relapsing and remitting course. Assessment of disease activity critically informs treatment decisions. In addition to endoscopic remission, histologic remission is emerging as a treatment target and a key factor in the evaluation of disease activity and therapeutic efficacy. However, manual pathologist evaluation is semiquantitative and limited in granularity. Machine learning approaches are increasingly being developed to aid pathologists in accurate and reproducible scoring of histology, enabling precise quantitation of clinically relevant features. Here, we report the development and validation of convolutional neural network models that quantify histologic features pertinent to ulcerative colitis disease activity, directly from hematoxylin and eosin-stained whole slide images. Tissue and cell model predictions were used to generate quantitative human-interpretable features to fully characterize the histology samples. Tissue and cell predictions showed comparable agreement to pathologist annotations, and the extracted slide-level human-interpretable features demonstrated strong correlations with disease severity and pathologist-assigned Nancy histological index scores. Moreover, using a random forest classifier based on 13 human-interpretable features derived from the tissue and cell models, we were able to accurately predict Nancy histological index scores, with a weighted kappa (κ = 0.91) and Spearman correlation (⍴ = 0.89, P < .001) when compared with pathologist consensus Nancy histological index scores. We were also able to predict histologic remission, based on the absence of neutrophil extravasation, with a high accuracy of 0.97. This work demonstrates the potential of computer vision to enable a standardized and robust assessment of ulcerative colitis histopathology for translational research and improved evaluation of disease activity and prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丹丹子发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
小郭发布了新的文献求助10
1秒前
yuan发布了新的文献求助10
1秒前
小满应助aga采纳,获得10
1秒前
bkagyin应助猪猪空采纳,获得30
1秒前
2秒前
zkz发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
谦让友绿发布了新的文献求助10
3秒前
柚子发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
xm102322应助zz采纳,获得30
4秒前
rabbitsang发布了新的文献求助10
4秒前
Hustch完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI2S应助房东的猫采纳,获得10
5秒前
陶醉飞阳发布了新的文献求助10
5秒前
6秒前
6秒前
Hello应助Haha采纳,获得10
6秒前
CodeCraft应助lily采纳,获得10
7秒前
毕嵩山完成签到,获得积分20
7秒前
7秒前
阿关发布了新的文献求助10
7秒前
Changlu完成签到,获得积分10
7秒前
栗子发布了新的文献求助30
8秒前
8秒前
8秒前
yu发布了新的文献求助10
8秒前
8秒前
nevermind发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398