Artificial Intelligence Enables Quantitative Assessment of Ulcerative Colitis Histology

溃疡性结肠炎 医学 组织学 病理 H&E染色 炎症性肠病 分级(工程) 疾病 人工智能 放射科 染色 计算机科学 生物 生态学
作者
Fedaa Najdawi,Kathleen Sucipto,Pratik Mistry,Stephanie Hennek,Christina Jayson,Mary Lin,Darren Fahy,Shawn Kinsey,Ilan Wapinski,Andrew H. Beck,Murray B. Resnick,Archit Khosla,Michael G. Drage
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (6): 100124-100124 被引量:15
标识
DOI:10.1016/j.modpat.2023.100124
摘要

Ulcerative colitis is a chronic inflammatory bowel disease that is characterized by a relapsing and remitting course. Assessment of disease activity critically informs treatment decisions. In addition to endoscopic remission, histologic remission is emerging as a treatment target and a key factor in the evaluation of disease activity and therapeutic efficacy. However, manual pathologist evaluation is semiquantitative and limited in granularity. Machine learning approaches are increasingly being developed to aid pathologists in accurate and reproducible scoring of histology, enabling precise quantitation of clinically relevant features. Here, we report the development and validation of convolutional neural network models that quantify histologic features pertinent to ulcerative colitis disease activity, directly from hematoxylin and eosin-stained whole slide images. Tissue and cell model predictions were used to generate quantitative human-interpretable features to fully characterize the histology samples. Tissue and cell predictions showed comparable agreement to pathologist annotations, and the extracted slide-level human-interpretable features demonstrated strong correlations with disease severity and pathologist-assigned Nancy histological index scores. Moreover, using a random forest classifier based on 13 human-interpretable features derived from the tissue and cell models, we were able to accurately predict Nancy histological index scores, with a weighted kappa (κ = 0.91) and Spearman correlation (⍴ = 0.89, P < .001) when compared with pathologist consensus Nancy histological index scores. We were also able to predict histologic remission, based on the absence of neutrophil extravasation, with a high accuracy of 0.97. This work demonstrates the potential of computer vision to enable a standardized and robust assessment of ulcerative colitis histopathology for translational research and improved evaluation of disease activity and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yon完成签到 ,获得积分10
刚刚
呆头完成签到,获得积分10
刚刚
科研通AI5应助skier采纳,获得10
1秒前
ywang发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
keyantong完成签到 ,获得积分10
7秒前
booshu完成签到,获得积分10
8秒前
jy发布了新的文献求助10
9秒前
朴斓完成签到,获得积分10
9秒前
科研通AI5应助魏伯安采纳,获得10
12秒前
哈密哈密完成签到,获得积分10
12秒前
12秒前
Ava应助浪迹天涯采纳,获得10
12秒前
13秒前
安南发布了新的文献求助10
13秒前
14秒前
healthy完成签到 ,获得积分10
14秒前
15秒前
刘大可完成签到,获得积分10
15秒前
18秒前
su发布了新的文献求助10
18秒前
rookie发布了新的文献求助10
19秒前
方勇飞发布了新的文献求助10
20秒前
郭菱香完成签到 ,获得积分20
20秒前
皮念寒完成签到,获得积分10
20秒前
顺其自然_666888完成签到,获得积分10
20秒前
21秒前
向上的小v完成签到 ,获得积分10
22秒前
22秒前
24秒前
酷酷紫蓝完成签到 ,获得积分10
24秒前
24秒前
方勇飞完成签到,获得积分10
24秒前
LYZ完成签到,获得积分10
24秒前
黄景滨完成签到 ,获得积分20
25秒前
25秒前
123456完成签到,获得积分20
25秒前
hkl1542完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824