MMKGR: Multi-hop Multi-modal Knowledge Graph Reasoning

计算机科学 情态动词 人工智能 嵌入 模态逻辑 机会主义推理 图形 机器学习 基于模型的推理 知识表示与推理 理论计算机科学 化学 高分子化学
作者
Shangfei Zheng,Weiqing Wang,Jianfeng Qu,Hongzhi Yin,Wei Chen,Lei Zhao
标识
DOI:10.1109/icde55515.2023.00015
摘要

Multi-modal knowledge graphs (MKGs) include not only the relation triplets, but also related multi-modal auxiliary data (i.e., texts and images), which enhance the diversity of knowledge. However, the natural incompleteness has significantly hindered the applications of MKGs. To tackle the problem, existing studies employ the embedding-based reasoning models to infer the missing knowledge after fusing the multi-modal features. However, the reasoning performance of these methods is limited due to the following problems: (1) ineffective fusion of multi-modal auxiliary features; (2) lack of complex reasoning ability as well as inability to conduct the multi-hop reasoning which is able to infer more missing knowledge. To overcome these problems, we propose a novel model entitled MMKGR (Multi-hop Multi-modal Knowledge Graph Reasoning). Specifically, the model contains the following two components: (1) a unified gate-attention network which is designed to generate effective multi-modal complementary features through sufficient attention interaction and noise reduction; (2) a complementary feature-aware reinforcement learning method which is proposed to predict missing elements by performing the multi-hop reasoning process, based on the features obtained in component (1). The experimental results demonstrate that MMKGR outperforms the state-of-the-art approaches in the MKG reasoning task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房靳发布了新的文献求助10
1秒前
zys0421完成签到,获得积分10
1秒前
君齐发布了新的文献求助10
3秒前
科研通AI6应助haorandu采纳,获得10
3秒前
3秒前
完美世界应助刘研采纳,获得10
3秒前
在水一方应助尊敬梦旋采纳,获得30
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
华仔应助心信鑫采纳,获得10
6秒前
zkygmu完成签到,获得积分20
6秒前
李健的小迷弟应助sss采纳,获得10
6秒前
6秒前
科研小白完成签到,获得积分10
6秒前
7秒前
Houyulu完成签到,获得积分10
8秒前
Synan完成签到,获得积分10
9秒前
9秒前
9秒前
66完成签到,获得积分10
9秒前
9秒前
坦率灵槐发布了新的文献求助10
10秒前
糕糕发布了新的文献求助10
10秒前
英姑应助刚睡醒采纳,获得30
10秒前
10秒前
10秒前
11秒前
11秒前
无私的颤完成签到,获得积分10
12秒前
快乐咸鱼发布了新的文献求助20
12秒前
慕辰完成签到,获得积分10
13秒前
14秒前
orixero应助坦率灵槐采纳,获得10
15秒前
15秒前
乐乐应助安澜采纳,获得30
16秒前
16秒前
西西里柠檬完成签到,获得积分10
16秒前
dz发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460966
求助须知:如何正确求助?哪些是违规求助? 4566057
关于积分的说明 14302811
捐赠科研通 4491640
什么是DOI,文献DOI怎么找? 2460418
邀请新用户注册赠送积分活动 1449754
关于科研通互助平台的介绍 1425527