TSC-AutoML: Meta-learning for Automatic Time Series Classification Algorithm Selection

超参数 计算机科学 机器学习 人工智能 元数据 上传 选择(遗传算法) 任务(项目管理) 元学习(计算机科学) 强化学习 算法 超参数优化 数据挖掘 支持向量机 操作系统 经济 管理
作者
Tianyu Mu,Hongzhi Wang,Shenghe Zheng,Zhiyu Liang,Chunnan Wang,Xinyue Shao,Zheng Liang
标识
DOI:10.1109/icde55515.2023.00084
摘要

With years of development, a significant number of Time Series Classification (TSC) algorithms have been proposed and applied to various fields such as scientific research and industry scenarios, including traditional statistical methods, machine learning methods, and recently deep learning models. However, choosing a suitable model along with good parameter values that perform well on a given task, which is also known as Combined Algorithm Selection and Hyperparameter optimization problem (CASH), is still challenging. How to automatically select the appropriate algorithm according to the task during analyzing is a topic worthy of further research. Nevertheless, for TSC, a field that has been developed for decades, there is no effective and efficient approach for automatic algorithm selection. To the best of our knowledge, the current approach is based on genetic search, which is very computationally intensive and time-consuming. Therefore, in this paper, we propose TSC-AutoML, a zero-configuration and meta-learning-based approach for the automatic Time Series Classification algorithm CASH (also known as TSC-CASH). TSC-AutoML extracts knowledge from historical tasks and performs automatic feature selection and knowledge filtering with a reinforcement learning policy. The experience extracted is filtered and transformed into metadata. The meta-learner trained on the metadata together with our proposed warm start strategy will select an optimal algorithm for tasks uploaded by users, and then our proposed Hyperparameter Optimization method based on the Fast Warm Start strategy searches for hyperparameter combinations of the selected algorithm and adjusts parameter configuration to achieve top performance. The entire process is pre-trained, automated for the new task, and parameter-free for the user to decide, making it easy for users with the little domain experience to get started easily. Experimental results illustrate that TSC-AutoML outperforms existing methods in terms of both time and accuracy of optimum algorithm selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yvonne发布了新的文献求助10
刚刚
Martin发布了新的文献求助10
刚刚
1231完成签到,获得积分10
1秒前
Akim应助荆棘鸟采纳,获得10
2秒前
2秒前
3秒前
学术小菜鸟完成签到,获得积分10
4秒前
5秒前
甜味白开水完成签到,获得积分10
5秒前
6秒前
1231发布了新的文献求助10
6秒前
yun完成签到,获得积分10
6秒前
cccccl完成签到,获得积分20
7秒前
ai完成签到,获得积分10
7秒前
8秒前
Xzmmmm完成签到,获得积分10
8秒前
高高的寻梅完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
娟娟酱发布了新的文献求助10
10秒前
11秒前
11秒前
酷酷薯片发布了新的文献求助10
11秒前
苦糖果发布了新的文献求助30
12秒前
一包辣条完成签到,获得积分10
12秒前
13秒前
dongjingran发布了新的文献求助20
13秒前
Neuro_dan发布了新的文献求助10
14秒前
友好怜珊发布了新的文献求助10
15秒前
anne发布了新的文献求助10
17秒前
17秒前
Baraka发布了新的文献求助10
19秒前
CHANGE发布了新的文献求助20
19秒前
Owen应助酷酷从凝采纳,获得10
21秒前
曾经阁发布了新的文献求助10
22秒前
27秒前
27秒前
Jasper应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3252053
求助须知:如何正确求助?哪些是违规求助? 2894899
关于积分的说明 8283940
捐赠科研通 2563549
什么是DOI,文献DOI怎么找? 1391730
科研通“疑难数据库(出版商)”最低求助积分说明 651925
邀请新用户注册赠送积分活动 628894