TRPV1型
药理学
卵清蛋白
辣椒素
化学
炎症
嗜酸性粒细胞趋化因子
医学
趋化因子
免疫学
受体
瞬时受体电位通道
生物化学
免疫系统
作者
Meihao Peng,Jintao Li,Jie Zhou,Bowen Zhang,Jiaqing Liao,Di Yang,Yu Wang,Yixi Yang,Rui Li,Xue Tang,Qiuxia Lu,Qi Zhao
出处
期刊:Phytomedicine
[Elsevier]
日期:2023-09-01
卷期号:118: 154946-154946
被引量:2
标识
DOI:10.1016/j.phymed.2023.154946
摘要
Asthma is a chronic inflammatory disease that is challenging to treat. Fritillaria unibracteata var. wabuensis (FUW) is the plant origin for the famous Chinese antitussive medicine Fritillaria Cirrhosae Bulbus. The total alkaloids of Fritillaria unibracteata var. wabuensis bulbus (TAs-FUW) have anti-inflammatory properties and may be used to treat asthma.To explore whether TAs-FUW have bioactivity against airway inflammation and a therapeutic effect on chronic asthma.The alkaloids were extracted via ultrasonication in a cryogenic chloroform-methanol solution after ammonium-hydroxide percolation of the bulbus. UPLC-Q-TOF/MS was used to characterize the composition of TAs-FUW. An ovalbumin (OVA)-induced asthmatic mouse model was established. We used whole-body plethysmography, ELISA, western blotting, RT-qPCR, and histological analyses to assess the pulmonary pathological changes in these mice after TAs-FUW treatment. Additionally, TNF-α/IL-4-induced inflammation in BEAS-2B cells was used as an in vitro model, whereby the effects of various doses of TAs-FUW on the TRPV1/Ca2+-dependent NFAT-induced expression of TSLP were assessed. Stimulation and inhibition of TRPV1 receptors by capsaicin (CAP) and capsazepine (CPZ), respectively, were used to validate the effect of TAs-FUW.The UPLC-Q-TOF/MS analysis revealed that TAs-FUW mainly contain six compounds (peiminine, peimine, edpetiline, khasianine, peimisine, and sipeimine). TAs-FUW improved airway inflammation and obstruction, mucus secretion, collagen deposition, and leukocyte and macrophage infiltration, and downregulated TSLP by inhibiting the TRPV1/NFAT pathway in asthmatic mice. In vitro, the application of CPZ demonstrated that the TRPV1 channel is involved in TNF-α/IL-4-mediated regulation of TSLP. TAs-FUW suppressed TNF-α/IL-4-induced TSLP generation expression by regulating the TRPV1/Ca2+/NFAT pathway. Furthermore, TAs-FUW reduced CAP-induced TSLP release by inhibiting TRPV1 activation. Notably, sipeimine and edpetiline each were sufficient to block the TRPV1-mediated Ca2+ influx.Our study is the first to demonstrate that TNF-α/IL-4 can activate the TRPV1 channel. TAs-FUW can alleviate asthmatic inflammation by suppressing the TRPV1 pathway and thereby preventing the increase in cellular Ca2+ influx and the subsequent NFAT activation. The alkaloids in FUW may be used for complementary or alternative therapies in asthma.
科研通智能强力驱动
Strongly Powered by AbleSci AI