已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Developing a machine learning model for detecting depression, anxiety, and apathy in older adults with mild cognitive impairment using speech and facial expressions: A cross-sectional observational study

冷漠 焦虑 痴呆 心理学 观察研究 萧条(经济学) 认知 临床心理学 精神科 医学 疾病 宏观经济学 病理 经济
作者
Ying Zhou,Wei Han,Xiuyu Yao,Jiajun Xue,Zheng Li,Yingxin Li
出处
期刊:International Journal of Nursing Studies [Elsevier]
卷期号:146: 104562-104562 被引量:10
标识
DOI:10.1016/j.ijnurstu.2023.104562
摘要

Depression, anxiety, and apathy are highly prevalent in older people with preclinical dementia and mild cognitive impairment. These symptoms have also proven valuable in predicting the progression from mild cognitive impairment to dementia, enabling a timely diagnosis and treatment. However, objective and reliable indicators to detect and distinguish depression, anxiety, and apathy are relatively scarce.This study aimed to develop a machine learning model to detect and distinguish depression, anxiety, and apathy based on speech and facial expressions.An observational, cross-sectional study design.The memory outpatient department of a tertiary hospital.319 older adults diagnosed with mild cognitive impairment.Depression, anxiety, and apathy were evaluated by the Public Health Questionnaire, General Anxiety Disorder, and Apathy Evaluation Scale, respectively. Speech and facial expressions of older adults with mild cognitive impairment were digitally captured using audio and video recording software. Open-source data analysis toolkits were utilized to extract speech, facial, and text features. The multiclass classification was used to develop classification models, and shapely additive explanations were used to explain the contribution of each feature within the model.The random forest method was used to develop a multiclass emotion classification model, which performed well in classifying emotions with a weighted-average F1 score of 96.6 %. The model also demonstrated high accuracy, precision, and recall, with 87.4 %, 86.6 %, and 87.6 %, respectively.The machine learning model developed in this study demonstrated strong classification performance in detecting and differentiating depression, anxiety, and apathy. This innovative approach combines text, audio, and video to provide objective methods for precise classification and remote monitoring of these symptoms in nursing practice.This study was registered at the Chinese Clinical Trial Registry (registration number: ChiCTR1900023892; registration date: June 19th, 2019).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bailey发布了新的文献求助30
1秒前
1秒前
自信号厂完成签到 ,获得积分10
2秒前
小熊发布了新的文献求助10
4秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
6秒前
Hanny完成签到 ,获得积分10
9秒前
江三村完成签到 ,获得积分10
9秒前
希望天下0贩的0应助BX-95采纳,获得10
11秒前
13秒前
七草肃完成签到,获得积分10
15秒前
汉堡包应助Ade采纳,获得10
15秒前
21秒前
板凳完成签到 ,获得积分10
24秒前
25秒前
快乐滑板发布了新的文献求助10
25秒前
25秒前
30秒前
Summer_Xia完成签到 ,获得积分10
31秒前
LYZSh完成签到,获得积分10
34秒前
wzy完成签到,获得积分10
36秒前
37秒前
英姑应助灰灰采纳,获得10
41秒前
45秒前
俭朴的元绿完成签到,获得积分10
46秒前
时尚白凡完成签到 ,获得积分10
47秒前
tanhaowen发布了新的文献求助10
49秒前
yaoyao发布了新的文献求助10
49秒前
小猪琪琪完成签到,获得积分10
55秒前
57秒前
cx发布了新的文献求助10
1分钟前
无聊的月饼完成签到 ,获得积分10
1分钟前
危机的囧完成签到,获得积分10
1分钟前
rick3455完成签到 ,获得积分10
1分钟前
小蘑菇应助winterm采纳,获得10
1分钟前
1分钟前
韩一完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133855
求助须知:如何正确求助?哪些是违规求助? 2784787
关于积分的说明 7768474
捐赠科研通 2440139
什么是DOI,文献DOI怎么找? 1297185
科研通“疑难数据库(出版商)”最低求助积分说明 624901
版权声明 600791