Developing a machine learning model for detecting depression, anxiety, and apathy in older adults with mild cognitive impairment using speech and facial expressions: A cross-sectional observational study

冷漠 焦虑 痴呆 心理学 观察研究 萧条(经济学) 认知 临床心理学 精神科 医学 疾病 病理 经济 宏观经济学
作者
Ying Zhou,Wei Han,Xiuyu Yao,Jiajun Xue,Zheng Li,Yingxin Li
出处
期刊:International Journal of Nursing Studies [Elsevier BV]
卷期号:146: 104562-104562 被引量:12
标识
DOI:10.1016/j.ijnurstu.2023.104562
摘要

Depression, anxiety, and apathy are highly prevalent in older people with preclinical dementia and mild cognitive impairment. These symptoms have also proven valuable in predicting the progression from mild cognitive impairment to dementia, enabling a timely diagnosis and treatment. However, objective and reliable indicators to detect and distinguish depression, anxiety, and apathy are relatively scarce.This study aimed to develop a machine learning model to detect and distinguish depression, anxiety, and apathy based on speech and facial expressions.An observational, cross-sectional study design.The memory outpatient department of a tertiary hospital.319 older adults diagnosed with mild cognitive impairment.Depression, anxiety, and apathy were evaluated by the Public Health Questionnaire, General Anxiety Disorder, and Apathy Evaluation Scale, respectively. Speech and facial expressions of older adults with mild cognitive impairment were digitally captured using audio and video recording software. Open-source data analysis toolkits were utilized to extract speech, facial, and text features. The multiclass classification was used to develop classification models, and shapely additive explanations were used to explain the contribution of each feature within the model.The random forest method was used to develop a multiclass emotion classification model, which performed well in classifying emotions with a weighted-average F1 score of 96.6 %. The model also demonstrated high accuracy, precision, and recall, with 87.4 %, 86.6 %, and 87.6 %, respectively.The machine learning model developed in this study demonstrated strong classification performance in detecting and differentiating depression, anxiety, and apathy. This innovative approach combines text, audio, and video to provide objective methods for precise classification and remote monitoring of these symptoms in nursing practice.This study was registered at the Chinese Clinical Trial Registry (registration number: ChiCTR1900023892; registration date: June 19th, 2019).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬味电子对儿完成签到,获得积分10
2秒前
YuenYuen发布了新的文献求助10
2秒前
田欣发布了新的文献求助10
2秒前
爆米花应助111采纳,获得10
3秒前
Hello应助chouchou采纳,获得10
3秒前
zhangqin发布了新的文献求助10
4秒前
英姑应助罐装采纳,获得10
5秒前
fd163c应助狗蛋不会写论文采纳,获得10
6秒前
dg g g g g g g完成签到,获得积分10
8秒前
10秒前
小二郎应助虚拟的怀绿采纳,获得10
13秒前
jiwn完成签到,获得积分10
14秒前
千里江山一只蝇完成签到,获得积分10
14秒前
15秒前
19秒前
CXC完成签到,获得积分10
20秒前
李爱国应助zhangqin采纳,获得30
20秒前
fafafasci完成签到,获得积分10
20秒前
香蕉觅云应助sdl采纳,获得10
22秒前
风过无痕zj完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
云飞扬给云飞扬的求助进行了留言
25秒前
28秒前
高大凌寒应助angelinazh采纳,获得200
29秒前
29秒前
高兴荔枝完成签到,获得积分10
30秒前
31秒前
砥砺应助Lakebaikal采纳,获得10
31秒前
pegasus0802完成签到,获得积分10
32秒前
yi发布了新的文献求助10
32秒前
狗蛋不会写论文完成签到,获得积分10
33秒前
虚拟的怀绿完成签到,获得积分10
35秒前
35秒前
查丽完成签到 ,获得积分10
35秒前
香蕉觅云应助wdl采纳,获得10
36秒前
36秒前
香蕉觅云应助的微博采纳,获得10
37秒前
liuqingyu完成签到,获得积分10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730563
求助须知:如何正确求助?哪些是违规求助? 3275178
关于积分的说明 9991341
捐赠科研通 2990805
什么是DOI,文献DOI怎么找? 1641233
邀请新用户注册赠送积分活动 779636
科研通“疑难数据库(出版商)”最低求助积分说明 748331