材料科学
陶瓷
衰减
反射损耗
吸收(声学)
阻抗匹配
电磁辐射
辐射
带宽(计算)
电阻抗
光电子学
光学
复合材料
计算机科学
电信
电气工程
复合数
物理
工程类
作者
Zhang Jia-tai,Yuxiang Zhan,Zhikun Ren,Weili Wang,Zhixuan Zhang,Qiang Zhang,Guifang Han,Weibin Zhang
摘要
Abstract With the advent of the 5G era, while enjoying the convenience of information in our daily lives, we also face the challenge of dealing with increased and more complex electromagnetic (EM) radiation issues. Therefore, finding EM wave absorbing materials for the operating frequency range (2–18 GHz) of most electronic products has become an important aspect of ensuring human health and environmental safety. In this study, a variety of elements were incorporated into (WZrNbTaM)C powders by calculation and design, where M is Ni, Cr, or Ti. Phase and microstructural analysis demonstrated the successful preparation of a single‐phase solid solution with uniform elements distribution. The magnetic properties of the powders containing Ni and Cr elements exhibited significant improvement. Further analysis revealed that both the impedance matching and EM wave attenuation capabilities of (WZrNbTaCr)C and (WZrNbTaNi)C were enhanced, thereby improving their absorption performance. Compared to (WZrNbTaTi)C, (WZrNbTaCr)C and (WZrNbTaNi)C exhibit a significant improvement in minimum reflection loss (RL), with an increase of 27.1% and 37.2%, reaching −45.21 and −48.79 dB, respectively. The maximum effective absorption bandwidth (EAB) has also increased by 22.9% and 48.6%, reaching 3.44 and 4.16 GHz, respectively. It is noteworthy that (WZrNbTaCr)C and (WZrNbTaNi)C achieved these excellent absorption properties while maintaining a matching thickness of 1.07 and 1.17 mm. This lightweight and thin performance meets the requirements for use in special scenarios while ensuring the outstanding absorption performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI