ARD-SLAM: Accurate and robust dynamic SLAM using dynamic object identification and improved multi-view geometrical approaches

同时定位和映射 计算机视觉 人工智能 计算机科学 Orb(光学) RGB颜色模型 水准点(测量) 弹道 对象(语法) 机器人 移动机器人 图像(数学) 地理 天文 大地测量学 物理
作者
Qamar Ul Islam,Haidi Ibrahim,Pan Kok Chin,Kah Bin Lim,Mohd Zaid Abdullah,Fatemeh Khozaei
出处
期刊:Displays [Elsevier]
卷期号:82: 102654-102654 被引量:6
标识
DOI:10.1016/j.displa.2024.102654
摘要

In the evolving landscape of autonomous navigation, traditional Visual Simultaneous Localization and Mapping (SLAM) systems often encounter challenges in dynamic environments, primarily due to their reliance on assumptions of static surroundings. In response to these limitations, we introduce ARD-SLAM, a groundbreaking approach to dynamic SLAM that innovatively combines global dense optical tracking with sophisticated geometric methodologies. The core innovation of ARD-SLAM lies in its dynamic object identification technique, which harmoniously integrates geometric motion information with prospective motion data. This integration facilitates effective segmentation of moving objects, thereby substantially diminishing their impact on camera ego-motion estimation. ARD-SLAM is further enhanced by an advanced multi-view geometry method that emphasizes the selection of well-matched feature points. This approach is instrumental in efficiently managing dynamic scenarios while also reducing computational load. Rigorous testing on the TUM RGB-D and Bonn RGB-D benchmark datasets has established ARD-SLAM's superiority over established techniques like ORB-SLAM2/3, DynaSLAM, SD-SLAM, DGS-SLAM, and OVD-SLAM. Notably, ARD-SLAM achieves a substantial average reduction in Absolute Trajectory Error (ATE) by 86.1% and in Relative Pose Error (RPE) by 88.0% compared to ORB-SLAM3. The results from the Bonn RGB-D Dataset further underscore ARD-SLAM's effectiveness. Compared to other SLAM methods, ARD-SLAM shows remarkable improvements: 37.8% and 66.4% over DynaSLAM, 41.2% and 73.1% over DGS-SLAM, and 48.9% and 79.7% over OVD-SLAM in ATE and RPE metrics, respectively. This robust performance in dynamically changing environments solidifies ARD-SLAM as a significant advancement in SLAM technology, offering a more precise and adaptable solution for the complex challenges of real-world autonomous navigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐呀完成签到,获得积分10
刚刚
木头人呐完成签到 ,获得积分10
刚刚
小马甲应助吴岳采纳,获得10
刚刚
天天向上赶完成签到,获得积分10
刚刚
整齐的凡梦完成签到,获得积分10
1秒前
孙冉冉发布了新的文献求助10
2秒前
MHB应助towerman采纳,获得10
3秒前
Dean发布了新的文献求助10
3秒前
4秒前
加油加油发布了新的文献求助10
4秒前
lili完成签到 ,获得积分10
5秒前
文剑武书生完成签到,获得积分10
6秒前
科研通AI5应助无限鞅采纳,获得10
6秒前
6秒前
852应助木棉采纳,获得10
6秒前
7秒前
卓哥完成签到,获得积分10
8秒前
9秒前
Agan发布了新的文献求助10
9秒前
9秒前
10秒前
morlison发布了新的文献求助10
10秒前
科研通AI5应助金色年华采纳,获得10
12秒前
充电宝应助kh453采纳,获得10
12秒前
正经俠发布了新的文献求助10
12秒前
一衣发布了新的文献求助20
13秒前
可爱的函函应助药学牛马采纳,获得10
13秒前
XM发布了新的文献求助10
13秒前
专注之双完成签到,获得积分10
14秒前
SciGPT应助十一采纳,获得10
14秒前
14秒前
A1234完成签到,获得积分10
15秒前
刘铭晨发布了新的文献求助10
16秒前
孙冉冉完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
大模型应助hhzz采纳,获得10
21秒前
一只智慧喵完成签到,获得积分10
21秒前
科目三应助Fundamental采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808