Enhanced visible–infrared person re-identification based on cross-attention multiscale residual vision transformer

计算机科学 人工智能 残余物 变压器 计算机视觉 模式识别(心理学) 红外线的 工程类 算法 电压 光学 电气工程 物理
作者
Prodip Kumar Sarker,Qingjie Zhao
出处
期刊:Pattern Recognition [Elsevier]
卷期号:149: 110288-110288 被引量:11
标识
DOI:10.1016/j.patcog.2024.110288
摘要

Visible-infrared (VI) person re-identification (Re-ID) is a critical identification task that involves retrieving and matching images of an individual using both infrared and visible imaging modalities. To improve the performance, researchers have developed methods to obtain implicit feature information; however, this degrades with fewer discriminative features. To address this issue, we propose a weighted fused cross-attention multi-scale residual vision transformer (WF-CAMReViT) approach to re-identify the appropriate person from visible-infrared modality images by integrating the cross-attention multi-scale residual vision transformer architecture with Opposition-based Dove Swarm Optimization (ODSO). The proposed framework aims to bridge the domain gap between the visible and infrared modalities and significantly improve the re-identification performance. RGB (visible) and infrared (IR) images of persons are gathered from standard datasets, subjected to a cross-attention multi-scale residual vision transformer network to collect features, and then fuse using minimal weight. We also propose Opposition-based DSO to find the minimal weight. The weighted fused features are then subjected to the final decoder layer of CAMReViT to perceive the characteristics of each modality. In this study, model-aware enhancement (MAE) loss is develop to improve the modality information capacity of modality-shared features. Then, the experimental results on the SYSU-MM01 and RegDB datasets are compared with state-of-the-art transformer-based visible-infrared person Re-ID tasks to verify the efficacy of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Xl采纳,获得10
刚刚
李小莉0419完成签到 ,获得积分20
2秒前
2秒前
123发布了新的文献求助10
2秒前
3秒前
研友_Z7gV2Z应助qiii采纳,获得10
4秒前
赘婿应助黑化小狗采纳,获得10
4秒前
NexusExplorer应助草帽采纳,获得10
4秒前
星辰大海应助Mt采纳,获得10
6秒前
Lunjiang发布了新的文献求助10
6秒前
风清扬发布了新的文献求助10
6秒前
lucas发布了新的文献求助10
6秒前
321发布了新的文献求助10
7秒前
酷酷伟宸完成签到,获得积分10
7秒前
NexusExplorer应助123采纳,获得10
7秒前
8秒前
8秒前
顺利秋灵发布了新的文献求助10
8秒前
记得笑完成签到,获得积分10
9秒前
9秒前
finger完成签到,获得积分10
9秒前
XHM完成签到,获得积分10
10秒前
10秒前
qphys完成签到,获得积分0
10秒前
11秒前
11秒前
Owen应助李平采纳,获得10
12秒前
上官若男应助hyt采纳,获得10
12秒前
12秒前
调皮的晓凡完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
踏实的语山完成签到 ,获得积分10
13秒前
英吉利25发布了新的文献求助10
13秒前
大模型应助科研锐采纳,获得10
13秒前
飘逸太英发布了新的文献求助10
14秒前
14秒前
Oscillator发布了新的文献求助10
15秒前
15秒前
Criminology34应助陈小明采纳,获得10
15秒前
草帽完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277