Enhanced visible–infrared person re-identification based on cross-attention multiscale residual vision transformer

计算机科学 人工智能 残余物 变压器 计算机视觉 模式识别(心理学) 红外线的 工程类 算法 电压 光学 电气工程 物理
作者
Prodip Kumar Sarker,Qingjie Zhao
出处
期刊:Pattern Recognition [Elsevier]
卷期号:149: 110288-110288 被引量:11
标识
DOI:10.1016/j.patcog.2024.110288
摘要

Visible-infrared (VI) person re-identification (Re-ID) is a critical identification task that involves retrieving and matching images of an individual using both infrared and visible imaging modalities. To improve the performance, researchers have developed methods to obtain implicit feature information; however, this degrades with fewer discriminative features. To address this issue, we propose a weighted fused cross-attention multi-scale residual vision transformer (WF-CAMReViT) approach to re-identify the appropriate person from visible-infrared modality images by integrating the cross-attention multi-scale residual vision transformer architecture with Opposition-based Dove Swarm Optimization (ODSO). The proposed framework aims to bridge the domain gap between the visible and infrared modalities and significantly improve the re-identification performance. RGB (visible) and infrared (IR) images of persons are gathered from standard datasets, subjected to a cross-attention multi-scale residual vision transformer network to collect features, and then fuse using minimal weight. We also propose Opposition-based DSO to find the minimal weight. The weighted fused features are then subjected to the final decoder layer of CAMReViT to perceive the characteristics of each modality. In this study, model-aware enhancement (MAE) loss is develop to improve the modality information capacity of modality-shared features. Then, the experimental results on the SYSU-MM01 and RegDB datasets are compared with state-of-the-art transformer-based visible-infrared person Re-ID tasks to verify the efficacy of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
cdx完成签到,获得积分10
1秒前
Lignin发布了新的文献求助10
2秒前
Ava应助JerryZ采纳,获得10
3秒前
hgl发布了新的文献求助10
3秒前
3秒前
YY完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
Lignin发布了新的文献求助10
8秒前
spc68应助谨慎的寒松采纳,获得10
9秒前
10秒前
10秒前
哈哈发布了新的文献求助10
12秒前
12秒前
Mitophagy发布了新的文献求助10
13秒前
Lignin发布了新的文献求助10
13秒前
酷波er应助爱笑飞飞采纳,获得10
14秒前
Lbft发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
MchemG应助天天采纳,获得30
18秒前
18秒前
20秒前
20秒前
23秒前
24秒前
25秒前
26秒前
浪子应助zrw采纳,获得10
29秒前
蓝天发布了新的文献求助10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736878
求助须知:如何正确求助?哪些是违规求助? 5369127
关于积分的说明 15334294
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622982
邀请新用户注册赠送积分活动 1571829
关于科研通互助平台的介绍 1528648