Enhanced visible–infrared person re-identification based on cross-attention multiscale residual vision transformer

计算机科学 人工智能 残余物 变压器 计算机视觉 模式识别(心理学) 红外线的 工程类 算法 电压 光学 电气工程 物理
作者
Prodip Kumar Sarker,Qingjie Zhao
出处
期刊:Pattern Recognition [Elsevier]
卷期号:149: 110288-110288 被引量:11
标识
DOI:10.1016/j.patcog.2024.110288
摘要

Visible-infrared (VI) person re-identification (Re-ID) is a critical identification task that involves retrieving and matching images of an individual using both infrared and visible imaging modalities. To improve the performance, researchers have developed methods to obtain implicit feature information; however, this degrades with fewer discriminative features. To address this issue, we propose a weighted fused cross-attention multi-scale residual vision transformer (WF-CAMReViT) approach to re-identify the appropriate person from visible-infrared modality images by integrating the cross-attention multi-scale residual vision transformer architecture with Opposition-based Dove Swarm Optimization (ODSO). The proposed framework aims to bridge the domain gap between the visible and infrared modalities and significantly improve the re-identification performance. RGB (visible) and infrared (IR) images of persons are gathered from standard datasets, subjected to a cross-attention multi-scale residual vision transformer network to collect features, and then fuse using minimal weight. We also propose Opposition-based DSO to find the minimal weight. The weighted fused features are then subjected to the final decoder layer of CAMReViT to perceive the characteristics of each modality. In this study, model-aware enhancement (MAE) loss is develop to improve the modality information capacity of modality-shared features. Then, the experimental results on the SYSU-MM01 and RegDB datasets are compared with state-of-the-art transformer-based visible-infrared person Re-ID tasks to verify the efficacy of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随机科研完成签到,获得积分10
刚刚
orixero应助pengchen采纳,获得10
刚刚
嘤嘤怪完成签到,获得积分0
1秒前
1秒前
xuerkk发布了新的文献求助10
1秒前
1秒前
林雅完成签到 ,获得积分10
2秒前
2秒前
小言发布了新的文献求助10
2秒前
cheche完成签到,获得积分10
3秒前
研友_VZG7GZ应助壮观雅容采纳,获得10
3秒前
3秒前
jiaxingwei完成签到,获得积分10
3秒前
3秒前
4秒前
皖医梁朝伟完成签到 ,获得积分0
4秒前
4秒前
4秒前
qianqian发布了新的文献求助10
5秒前
5秒前
zeta发布了新的文献求助10
5秒前
5秒前
边伯贤发布了新的文献求助10
5秒前
5秒前
111完成签到 ,获得积分10
5秒前
大胆绿柳完成签到,获得积分10
5秒前
5秒前
6秒前
NIUBEN发布了新的文献求助10
6秒前
烟花应助王小小采纳,获得10
7秒前
专注成风完成签到,获得积分10
8秒前
xuerkk完成签到,获得积分10
8秒前
拾新发布了新的文献求助10
8秒前
8秒前
乐乐应助李大龙采纳,获得10
8秒前
gaochanglu发布了新的文献求助10
8秒前
科研通AI6应助淡然的青旋采纳,获得10
9秒前
大个应助chenhouhan采纳,获得10
9秒前
科研通AI6应助chenhouhan采纳,获得10
9秒前
Owen应助chenhouhan采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302