Enhanced visible–infrared person re-identification based on cross-attention multiscale residual vision transformer

计算机科学 人工智能 残余物 变压器 计算机视觉 模式识别(心理学) 红外线的 工程类 算法 电压 光学 电气工程 物理
作者
Prodip Kumar Sarker,Qingjie Zhao
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110288-110288 被引量:11
标识
DOI:10.1016/j.patcog.2024.110288
摘要

Visible-infrared (VI) person re-identification (Re-ID) is a critical identification task that involves retrieving and matching images of an individual using both infrared and visible imaging modalities. To improve the performance, researchers have developed methods to obtain implicit feature information; however, this degrades with fewer discriminative features. To address this issue, we propose a weighted fused cross-attention multi-scale residual vision transformer (WF-CAMReViT) approach to re-identify the appropriate person from visible-infrared modality images by integrating the cross-attention multi-scale residual vision transformer architecture with Opposition-based Dove Swarm Optimization (ODSO). The proposed framework aims to bridge the domain gap between the visible and infrared modalities and significantly improve the re-identification performance. RGB (visible) and infrared (IR) images of persons are gathered from standard datasets, subjected to a cross-attention multi-scale residual vision transformer network to collect features, and then fuse using minimal weight. We also propose Opposition-based DSO to find the minimal weight. The weighted fused features are then subjected to the final decoder layer of CAMReViT to perceive the characteristics of each modality. In this study, model-aware enhancement (MAE) loss is develop to improve the modality information capacity of modality-shared features. Then, the experimental results on the SYSU-MM01 and RegDB datasets are compared with state-of-the-art transformer-based visible-infrared person Re-ID tasks to verify the efficacy of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
华仔应助小叶大王采纳,获得10
2秒前
17完成签到,获得积分10
4秒前
海孩子完成签到,获得积分10
9秒前
薛乎虚完成签到 ,获得积分10
9秒前
艳艳宝完成签到 ,获得积分10
14秒前
失眠的笑翠完成签到 ,获得积分10
15秒前
16秒前
完美世界应助小白采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
gelinhao完成签到,获得积分10
19秒前
chi发布了新的文献求助10
20秒前
彭于彦祖应助科研通管家采纳,获得150
24秒前
Singularity应助科研通管家采纳,获得10
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
小杭76应助科研通管家采纳,获得10
24秒前
Singularity应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
Singularity应助科研通管家采纳,获得10
24秒前
小杭76应助科研通管家采纳,获得10
24秒前
Singularity应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
风清扬应助科研通管家采纳,获得150
25秒前
养猪大户完成签到 ,获得积分10
25秒前
小杭76应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
传奇3应助科研通管家采纳,获得50
25秒前
量子星尘发布了新的文献求助10
25秒前
carly完成签到 ,获得积分10
27秒前
赖建琛完成签到 ,获得积分10
29秒前
秀丽笑容完成签到 ,获得积分10
30秒前
33秒前
四季豆完成签到,获得积分10
33秒前
那些兔儿完成签到 ,获得积分0
36秒前
所所应助闪闪灵雁采纳,获得10
37秒前
四季豆发布了新的文献求助10
38秒前
小羊完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044603
求助须知:如何正确求助?哪些是违规求助? 4274186
关于积分的说明 13323344
捐赠科研通 4087837
什么是DOI,文献DOI怎么找? 2236545
邀请新用户注册赠送积分活动 1243935
关于科研通互助平台的介绍 1171966