Enhanced visible–infrared person re-identification based on cross-attention multiscale residual vision transformer

计算机科学 人工智能 残余物 变压器 计算机视觉 模式识别(心理学) 红外线的 工程类 算法 电压 光学 电气工程 物理
作者
Prodip Kumar Sarker,Qingjie Zhao
出处
期刊:Pattern Recognition [Elsevier]
卷期号:149: 110288-110288 被引量:11
标识
DOI:10.1016/j.patcog.2024.110288
摘要

Visible-infrared (VI) person re-identification (Re-ID) is a critical identification task that involves retrieving and matching images of an individual using both infrared and visible imaging modalities. To improve the performance, researchers have developed methods to obtain implicit feature information; however, this degrades with fewer discriminative features. To address this issue, we propose a weighted fused cross-attention multi-scale residual vision transformer (WF-CAMReViT) approach to re-identify the appropriate person from visible-infrared modality images by integrating the cross-attention multi-scale residual vision transformer architecture with Opposition-based Dove Swarm Optimization (ODSO). The proposed framework aims to bridge the domain gap between the visible and infrared modalities and significantly improve the re-identification performance. RGB (visible) and infrared (IR) images of persons are gathered from standard datasets, subjected to a cross-attention multi-scale residual vision transformer network to collect features, and then fuse using minimal weight. We also propose Opposition-based DSO to find the minimal weight. The weighted fused features are then subjected to the final decoder layer of CAMReViT to perceive the characteristics of each modality. In this study, model-aware enhancement (MAE) loss is develop to improve the modality information capacity of modality-shared features. Then, the experimental results on the SYSU-MM01 and RegDB datasets are compared with state-of-the-art transformer-based visible-infrared person Re-ID tasks to verify the efficacy of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煎包完成签到,获得积分10
刚刚
Sunny发布了新的文献求助10
1秒前
1秒前
王足各完成签到,获得积分10
1秒前
1秒前
smottom应助a.........采纳,获得10
2秒前
2秒前
英姑应助含蓄觅山采纳,获得10
2秒前
碧蓝的夏彤完成签到,获得积分10
2秒前
结实星星应助饶天源采纳,获得10
2秒前
lw完成签到,获得积分10
3秒前
彪壮的冰双完成签到,获得积分10
3秒前
SMILE发布了新的文献求助10
3秒前
852应助xiaoxiao采纳,获得10
3秒前
石文莉发布了新的文献求助10
4秒前
谨慎道消发布了新的文献求助10
4秒前
科研通AI6.1应助天马采纳,获得10
4秒前
王璐瑶发布了新的文献求助10
4秒前
汪春花完成签到,获得积分10
4秒前
arizaki7完成签到,获得积分10
5秒前
暴躁的振家完成签到,获得积分10
6秒前
葉要加油发布了新的文献求助10
6秒前
6秒前
6秒前
8秒前
8秒前
ren发布了新的文献求助10
8秒前
9秒前
9秒前
Betty完成签到,获得积分10
9秒前
Lucas应助Sober采纳,获得10
10秒前
10秒前
香蕉觅云应助鱼儿采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768867
求助须知:如何正确求助?哪些是违规求助? 5577225
关于积分的说明 15419796
捐赠科研通 4902658
什么是DOI,文献DOI怎么找? 2637844
邀请新用户注册赠送积分活动 1585759
关于科研通互助平台的介绍 1540922