Enhanced visible–infrared person re-identification based on cross-attention multiscale residual vision transformer

计算机科学 人工智能 残余物 变压器 计算机视觉 模式识别(心理学) 红外线的 工程类 算法 电压 光学 电气工程 物理
作者
Prodip Kumar Sarker,Qingjie Zhao
出处
期刊:Pattern Recognition [Elsevier]
卷期号:149: 110288-110288 被引量:11
标识
DOI:10.1016/j.patcog.2024.110288
摘要

Visible-infrared (VI) person re-identification (Re-ID) is a critical identification task that involves retrieving and matching images of an individual using both infrared and visible imaging modalities. To improve the performance, researchers have developed methods to obtain implicit feature information; however, this degrades with fewer discriminative features. To address this issue, we propose a weighted fused cross-attention multi-scale residual vision transformer (WF-CAMReViT) approach to re-identify the appropriate person from visible-infrared modality images by integrating the cross-attention multi-scale residual vision transformer architecture with Opposition-based Dove Swarm Optimization (ODSO). The proposed framework aims to bridge the domain gap between the visible and infrared modalities and significantly improve the re-identification performance. RGB (visible) and infrared (IR) images of persons are gathered from standard datasets, subjected to a cross-attention multi-scale residual vision transformer network to collect features, and then fuse using minimal weight. We also propose Opposition-based DSO to find the minimal weight. The weighted fused features are then subjected to the final decoder layer of CAMReViT to perceive the characteristics of each modality. In this study, model-aware enhancement (MAE) loss is develop to improve the modality information capacity of modality-shared features. Then, the experimental results on the SYSU-MM01 and RegDB datasets are compared with state-of-the-art transformer-based visible-infrared person Re-ID tasks to verify the efficacy of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助然大宝采纳,获得10
1秒前
张亮完成签到,获得积分10
2秒前
犹豫的凡白完成签到 ,获得积分10
3秒前
鹅鹅鹅饿完成签到 ,获得积分10
4秒前
眼睛大的寄真完成签到 ,获得积分10
6秒前
Jasper应助科研通管家采纳,获得20
7秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
无花果应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
liyunma完成签到,获得积分10
9秒前
轻松的剑完成签到 ,获得积分10
11秒前
山乞凡完成签到 ,获得积分10
16秒前
可靠的书桃完成签到 ,获得积分10
16秒前
CipherSage应助zhangxr采纳,获得10
18秒前
19秒前
Yu完成签到 ,获得积分10
19秒前
22秒前
吃小孩的妖怪完成签到 ,获得积分10
23秒前
byelue完成签到,获得积分10
24秒前
美满的稚晴完成签到 ,获得积分10
25秒前
切奇莉亚发布了新的文献求助10
26秒前
猪肉超人菜婴蚊完成签到,获得积分10
30秒前
风滚草完成签到,获得积分10
32秒前
33秒前
清修完成签到,获得积分10
34秒前
35秒前
马登完成签到,获得积分10
35秒前
科研韭菜完成签到 ,获得积分10
36秒前
曹操的曹完成签到,获得积分10
36秒前
W1ll完成签到,获得积分10
37秒前
称心乐枫完成签到,获得积分10
38秒前
巴哒完成签到,获得积分10
38秒前
redeem发布了新的文献求助10
38秒前
大罗完成签到,获得积分10
38秒前
SGI发布了新的文献求助10
39秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790643
关于积分的说明 7795972
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626300
版权声明 601176