Study on enhancing waste PVC management through predictive Machine Learning analysis of TGA and its economic benefits

热重分析 均方误差 回归分析 支持向量机 平均绝对误差 医疗废物 计算机科学 机器学习 材料科学 统计 数学 废物管理 工程类 化学工程
作者
Rahul Vyas,Priyanka Swaminathan,Samarshi Chakraborty,Bandaru Kiran
出处
期刊:Energy Conversion And Management: X [Elsevier BV]
卷期号:22: 100556-100556 被引量:4
标识
DOI:10.1016/j.ecmx.2024.100556
摘要

The onset of COVID-19 has led to a sudden surge of existing medical plastic wastes, majority of them made up of PVCs. Pyrolysis, a globally adopted waste management alternative, can be a crucial aid to handle the bulk plastic wastes which makes the identification of thermal behaviour of materials important to aid in the scale-up of pyrolytic processes. The study presents a novel approach of utilising regression-based algorithms- Support Vector Regression (SVR), Random Forest Regression (RFR) and K-Nearest Neighbour algorithms (KNN), to predict the weight loss % at a heating rate of 20 K/min for 6 different PVC based medical plastic wastes. The correlation between the factors affecting Thermogravimetric Analysis (TGA) have been identified using heat maps, the Machine Learning (ML) models were trained on this TGA data and the model efficiencies were identified using performance metrics of Mean Squared Error (MSE), Mean Absolute Error (MAE) and R2. Several kinetic parameters like activation energy and reaction order were estimated using Coats - Redfern method followed by a cost analysis. The results showed that experimental and predicted weight loss were in good agreement with a regression R2 value > 0.97 for all the materials except the composite outer cover. Coats - Redfern method was successful in the estimation of kinetic parameters and the economic analysis indicated that the utilisation of ML in TGA analysis can have significant financial benefits for the concerned industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8uttonwood发布了新的文献求助10
1秒前
JamesPei应助丁牛青采纳,获得10
3秒前
科研通AI2S应助xueshu小裁缝采纳,获得10
3秒前
3秒前
4秒前
5秒前
5秒前
英姑应助Yumeng采纳,获得10
7秒前
9秒前
9秒前
安安完成签到,获得积分10
10秒前
茉莉发布了新的文献求助10
10秒前
脑洞疼应助h丶小虫采纳,获得10
11秒前
张西西完成签到 ,获得积分10
11秒前
yyh完成签到,获得积分10
11秒前
FloppyWow发布了新的文献求助10
11秒前
12秒前
如意寒烟发布了新的文献求助10
13秒前
14秒前
14秒前
蛋卷完成签到 ,获得积分10
15秒前
15秒前
小二郎应助科研通管家采纳,获得10
16秒前
omo应助科研通管家采纳,获得30
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
superxiao应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
tuanheqi应助科研通管家采纳,获得50
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
17秒前
zhangyidian应助科研通管家采纳,获得10
17秒前
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
QOP应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174