材料科学
电解质
锂(药物)
法拉第效率
金属
沉积(地质)
图层(电子)
电极
箔法
化学工程
原子层沉积
离子
铜
相间
金属锂
纳米技术
导电体
薄膜
复合材料
作者
Pengbo Zhai,Qianqian He,Huaning Jiang,Binyin Gao,Bo Zhang,Qian Chen,Zhilin Yang,Tianshuai Wang,Yongji Gong
标识
DOI:10.1002/aenm.202302730
摘要
Abstract Constructing artificial interfacial layers using 2D materials with tunable physicochemical properties is a promising strategy to fabricate high‐performance lithium (Li) metal anodes. However, their structural evolution during solid‐electrolyte interphase (SEI) formation and the thickness effects on charge transport remain elusive. Herein, 2D g‐C 3 N 4 layers with varied thicknesses are developed on the surface of copper foil to evaluate the thickness effects of artificial SEI on Li metal deposition. It is demonstrated that a thin g‐C 3 N 4 layer (≈2 nm) is rapidly decomposed and fractured under the impact of Li‐ion flux, while a thick g‐C 3 N 4 layer (≈50 nm) impedes the transport of lithium ions and electrons simultaneously, hindering the Li metal deposition underneath. Notably, a g‐C 3 N 4 layer with moderate thickness (≈10 nm) dominates in‐situ generation of stable g‐C 3 N 4 /Li 3 N hybrid artificial SEI and enables fast Li‐ion transport, which induces uniform Li deposition. The lithium electrode protected by the moderate‐thickness g‐C 3 N 4 layer exhibits outstanding cycling stability with a high average Coulombic efficiency of ≈98.92% for over 380 cycles and enables stable cycling of full cell with 50% Li excess and lean electrolyte. This proof‐of‐concept study provides essential guidance for the application of 2D materials in constructing artificial SEI for Li metal anodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI