Placental vessel segmentation and registration in fetoscopy: Literature review and MICCAI FetReg2021 challenge findings

胎儿检查 计算机科学 人工智能 计算机视觉 分割 背景(考古学) 产前诊断 怀孕 胎儿 遗传学 生物 古生物学
作者
Sophia Bano,Alessandro Casella,Francisco Herbert Lima Vasconcelos,Abdul Qayyum,Abdesslam Benzinou,Moona Mazher,Fabrice Mériaudeau,Chiara Lena,Ilaria Anita Cintorrino,Gaia Romana De Paolis,Jessica Biagioli,Daria Grechishnikova,Jing Jiao,Bizhe Bai,Yanyan Qiao,Binod Bhattarai,Rebati Raman Gaire,Ronast Subedi,Eduard Vazquez,Szymon Płotka,Aneta Lisowska,Arkadiusz Sitek,George Attilakos,Ruwan Wimalasundera,Anna L. David,D. Paladini,Jan Deprest,Elena De Momi,Leonardo S. Mattos,Sara Moccia,Danail Stoyanov
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:92: 103066-103066 被引量:6
标识
DOI:10.1016/j.media.2023.103066
摘要

Fetoscopy laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS). The procedure involves photocoagulation pathological anastomoses to restore a physiological blood exchange among twins. The procedure is particularly challenging, from the surgeon's side, due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility due to amniotic fluid turbidity, and variability in illumination. These challenges may lead to increased surgery time and incomplete ablation of pathological anastomoses, resulting in persistent TTTS. Computer-assisted intervention (CAI) can provide TTTS surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking. Research in this domain has been hampered by the lack of high-quality data to design, develop and test CAI algorithms. Through the Fetoscopic Placental Vessel Segmentation and Registration (FetReg2021) challenge, which was organized as part of the MICCAI2021 Endoscopic Vision (EndoVis) challenge, we released the first large-scale multi-center TTTS dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms with a focus on creating drift-free mosaics from long duration fetoscopy videos. For this challenge, we released a dataset of 2060 images, pixel-annotated for vessels, tool, fetus and background classes, from 18 in-vivo TTTS fetoscopy procedures and 18 short video clips of an average length of 411 frames for developing placental scene segmentation and frame registration for mosaicking techniques. Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fetoscopic procedures and 6 short clips. For the segmentation task, overall baseline performed was the top performing (aggregated mIoU of 0.6763) and was the best on the vessel class (mIoU of 0.5817) while team RREB was the best on the tool (mIoU of 0.6335) and fetus (mIoU of 0.5178) classes. For the registration task, overall the baseline performed better than team SANO with an overall mean 5-frame SSIM of 0.9348. Qualitatively, it was observed that team SANO performed better in planar scenarios, while baseline was better in non-planner scenarios. The detailed analysis showed that no single team outperformed on all 6 test fetoscopic videos. The challenge provided an opportunity to create generalized solutions for fetoscopic scene understanding and mosaicking. In this paper, we present the findings of the FetReg2021 challenge, alongside reporting a detailed literature review for CAI in TTTS fetoscopy. Through this challenge, its analysis and the release of multi-center fetoscopic data, we provide a benchmark for future research in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
思源应助苹果向露采纳,获得10
2秒前
2秒前
李健应助happy采纳,获得10
2秒前
文献小白完成签到 ,获得积分10
3秒前
浮游应助激动的访波采纳,获得10
3秒前
bkagyin应助激动的访波采纳,获得10
3秒前
4秒前
可闲发布了新的文献求助10
5秒前
6秒前
行寂静行完成签到 ,获得积分10
7秒前
自觉语琴完成签到 ,获得积分10
8秒前
NMC发布了新的文献求助10
9秒前
共享精神应助小宇OvO采纳,获得10
10秒前
机灵毛豆完成签到 ,获得积分10
10秒前
刘清河发布了新的文献求助10
10秒前
小禾完成签到 ,获得积分10
11秒前
12秒前
zjy完成签到,获得积分10
12秒前
12秒前
13秒前
齐齐完成签到,获得积分20
13秒前
shr完成签到,获得积分10
14秒前
奥拉同学完成签到,获得积分10
15秒前
易水完成签到 ,获得积分10
15秒前
happy发布了新的文献求助10
15秒前
可闲完成签到,获得积分20
16秒前
18秒前
柚柚子完成签到,获得积分10
21秒前
精油完成签到,获得积分10
21秒前
23秒前
mr完成签到 ,获得积分10
24秒前
中论文呢发布了新的文献求助10
25秒前
25秒前
25秒前
感动的莞发布了新的文献求助10
26秒前
糜灭龙完成签到,获得积分10
29秒前
科研通AI6应助tong采纳,获得10
29秒前
小宇OvO发布了新的文献求助10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499097
求助须知:如何正确求助?哪些是违规求助? 4596115
关于积分的说明 14452329
捐赠科研通 4529231
什么是DOI,文献DOI怎么找? 2481872
邀请新用户注册赠送积分活动 1465897
关于科研通互助平台的介绍 1438802