亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Placental vessel segmentation and registration in fetoscopy: Literature review and MICCAI FetReg2021 challenge findings

胎儿检查 计算机科学 人工智能 计算机视觉 分割 背景(考古学) 产前诊断 怀孕 遗传学 生物 古生物学 胎儿
作者
Sophia Bano,Alessandro Casella,Francisco Herbert Lima Vasconcelos,Abdul Qayyum,Abdesslam Benzinou,Moona Mazher,Fabrice Mériaudeau,Chiara Lena,Ilaria Anita Cintorrino,Gaia Romana De Paolis,Jessica Biagioli,Daria Grechishnikova,Jing Jiao,Bizhe Bai,Yanyan Qiao,Binod Bhattarai,Rebati Raman Gaire,Ronast Subedi,Eduard Vazquez,Szymon Płotka,Aneta Lisowska,Arkadiusz Sitek,George Attilakos,Ruwan Wimalasundera,Anna L. David,D. Paladini,Jan Deprest,Elena De Momi,Leonardo S. Mattos,Sara Moccia,Danail Stoyanov
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:92: 103066-103066 被引量:6
标识
DOI:10.1016/j.media.2023.103066
摘要

Fetoscopy laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS). The procedure involves photocoagulation pathological anastomoses to restore a physiological blood exchange among twins. The procedure is particularly challenging, from the surgeon's side, due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility due to amniotic fluid turbidity, and variability in illumination. These challenges may lead to increased surgery time and incomplete ablation of pathological anastomoses, resulting in persistent TTTS. Computer-assisted intervention (CAI) can provide TTTS surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking. Research in this domain has been hampered by the lack of high-quality data to design, develop and test CAI algorithms. Through the Fetoscopic Placental Vessel Segmentation and Registration (FetReg2021) challenge, which was organized as part of the MICCAI2021 Endoscopic Vision (EndoVis) challenge, we released the first large-scale multi-center TTTS dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms with a focus on creating drift-free mosaics from long duration fetoscopy videos. For this challenge, we released a dataset of 2060 images, pixel-annotated for vessels, tool, fetus and background classes, from 18 in-vivo TTTS fetoscopy procedures and 18 short video clips of an average length of 411 frames for developing placental scene segmentation and frame registration for mosaicking techniques. Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fetoscopic procedures and 6 short clips. For the segmentation task, overall baseline performed was the top performing (aggregated mIoU of 0.6763) and was the best on the vessel class (mIoU of 0.5817) while team RREB was the best on the tool (mIoU of 0.6335) and fetus (mIoU of 0.5178) classes. For the registration task, overall the baseline performed better than team SANO with an overall mean 5-frame SSIM of 0.9348. Qualitatively, it was observed that team SANO performed better in planar scenarios, while baseline was better in non-planner scenarios. The detailed analysis showed that no single team outperformed on all 6 test fetoscopic videos. The challenge provided an opportunity to create generalized solutions for fetoscopic scene understanding and mosaicking. In this paper, we present the findings of the FetReg2021 challenge, alongside reporting a detailed literature review for CAI in TTTS fetoscopy. Through this challenge, its analysis and the release of multi-center fetoscopic data, we provide a benchmark for future research in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
lala完成签到,获得积分10
10秒前
雁夜完成签到,获得积分10
12秒前
23秒前
ZHOU-XY发布了新的文献求助10
24秒前
ZHOU-XY完成签到,获得积分10
33秒前
Dawn完成签到 ,获得积分10
57秒前
欢呼宛亦发布了新的文献求助10
1分钟前
1分钟前
天天快乐应助芝知采纳,获得10
1分钟前
Hello应助欢呼宛亦采纳,获得10
1分钟前
1分钟前
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
tyrtyr完成签到,获得积分10
1分钟前
龟龟完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
492357816完成签到,获得积分10
2分钟前
tyrtyr发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
芝知发布了新的文献求助10
2分钟前
科研痛完成签到,获得积分10
2分钟前
2分钟前
芝知完成签到,获得积分10
3分钟前
科研通AI2S应助ttazi采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330375
求助须知:如何正确求助?哪些是违规求助? 2960038
关于积分的说明 8598044
捐赠科研通 2638594
什么是DOI,文献DOI怎么找? 1444478
科研通“疑难数据库(出版商)”最低求助积分说明 669106
邀请新用户注册赠送积分活动 656727