Placental vessel segmentation and registration in fetoscopy: Literature review and MICCAI FetReg2021 challenge findings

胎儿检查 计算机科学 人工智能 计算机视觉 分割 背景(考古学) 产前诊断 怀孕 遗传学 生物 古生物学 胎儿
作者
Sophia Bano,Alessandro Casella,Francisco Herbert Lima Vasconcelos,Abdul Qayyum,Abdesslam Benzinou,Moona Mazher,Fabrice Mériaudeau,Chiara Lena,Ilaria Anita Cintorrino,Gaia Romana De Paolis,Jessica Biagioli,Daria Grechishnikova,Jing Jiao,Bizhe Bai,Yanyan Qiao,Binod Bhattarai,Rebati Raman Gaire,Ronast Subedi,Eduard Vazquez,Szymon Płotka,Aneta Lisowska,Arkadiusz Sitek,George Attilakos,Ruwan Wimalasundera,Anna L. David,D. Paladini,Jan Deprest,Elena De Momi,Leonardo S. Mattos,Sara Moccia,Danail Stoyanov
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:92: 103066-103066 被引量:6
标识
DOI:10.1016/j.media.2023.103066
摘要

Fetoscopy laser photocoagulation is a widely adopted procedure for treating Twin-to-Twin Transfusion Syndrome (TTTS). The procedure involves photocoagulation pathological anastomoses to restore a physiological blood exchange among twins. The procedure is particularly challenging, from the surgeon's side, due to the limited field of view, poor manoeuvrability of the fetoscope, poor visibility due to amniotic fluid turbidity, and variability in illumination. These challenges may lead to increased surgery time and incomplete ablation of pathological anastomoses, resulting in persistent TTTS. Computer-assisted intervention (CAI) can provide TTTS surgeons with decision support and context awareness by identifying key structures in the scene and expanding the fetoscopic field of view through video mosaicking. Research in this domain has been hampered by the lack of high-quality data to design, develop and test CAI algorithms. Through the Fetoscopic Placental Vessel Segmentation and Registration (FetReg2021) challenge, which was organized as part of the MICCAI2021 Endoscopic Vision (EndoVis) challenge, we released the first large-scale multi-center TTTS dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms with a focus on creating drift-free mosaics from long duration fetoscopy videos. For this challenge, we released a dataset of 2060 images, pixel-annotated for vessels, tool, fetus and background classes, from 18 in-vivo TTTS fetoscopy procedures and 18 short video clips of an average length of 411 frames for developing placental scene segmentation and frame registration for mosaicking techniques. Seven teams participated in this challenge and their model performance was assessed on an unseen test dataset of 658 pixel-annotated images from 6 fetoscopic procedures and 6 short clips. For the segmentation task, overall baseline performed was the top performing (aggregated mIoU of 0.6763) and was the best on the vessel class (mIoU of 0.5817) while team RREB was the best on the tool (mIoU of 0.6335) and fetus (mIoU of 0.5178) classes. For the registration task, overall the baseline performed better than team SANO with an overall mean 5-frame SSIM of 0.9348. Qualitatively, it was observed that team SANO performed better in planar scenarios, while baseline was better in non-planner scenarios. The detailed analysis showed that no single team outperformed on all 6 test fetoscopic videos. The challenge provided an opportunity to create generalized solutions for fetoscopic scene understanding and mosaicking. In this paper, we present the findings of the FetReg2021 challenge, alongside reporting a detailed literature review for CAI in TTTS fetoscopy. Through this challenge, its analysis and the release of multi-center fetoscopic data, we provide a benchmark for future research in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助瑶一瑶采纳,获得10
1秒前
fmwang完成签到,获得积分10
2秒前
万能图书馆应助Zxc采纳,获得10
2秒前
Rainbow完成签到,获得积分10
2秒前
小小郭完成签到 ,获得积分10
2秒前
4秒前
Orange应助务实的犀牛采纳,获得10
4秒前
追寻飞风完成签到,获得积分10
4秒前
wenli完成签到,获得积分10
5秒前
5秒前
6秒前
Schmoo完成签到,获得积分10
7秒前
9秒前
圆圆的脑袋应助涛浪采纳,获得10
10秒前
隐形曼青应助皮皮桂采纳,获得10
11秒前
凝子老师完成签到,获得积分10
11秒前
奶糖发布了新的文献求助30
11秒前
TORCH完成签到 ,获得积分10
13秒前
李健的小迷弟应助lin采纳,获得10
13秒前
13秒前
14秒前
TT发布了新的文献求助10
14秒前
奶糖完成签到,获得积分10
17秒前
丘比特应助浪迹天涯采纳,获得10
18秒前
20秒前
20秒前
虚幻白玉发布了新的文献求助10
21秒前
清客完成签到 ,获得积分10
21秒前
传奇3应助阳阳采纳,获得10
21秒前
23秒前
皮皮桂发布了新的文献求助10
23秒前
Hello应助无奈傲菡采纳,获得10
23秒前
故意的傲玉应助FENGHUI采纳,获得10
24秒前
25秒前
科研通AI5应助nextconnie采纳,获得10
26秒前
James完成签到,获得积分10
26秒前
27秒前
Lucas应助sun采纳,获得10
28秒前
KristenStewart完成签到,获得积分10
30秒前
过时的热狗完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849