材料科学
相间
石墨
分子
电解质
化学工程
纳米技术
复合材料
物理化学
有机化学
电极
生物
遗传学
工程类
化学
作者
Huajun Zhao,Shiguang Hu,Yanchen Fan,Qingrong Wang,Jianding Li,Mingman Yuan,Xinzhi Ma,Jun Wang,Huaiyu Shao,Yonghong Deng
标识
DOI:10.1016/j.ensm.2023.103151
摘要
Electrolyte additives are pivotal for stable cycling of rechargeable lithium ion batteries (LIBs), which dictate the creation of the protective interphases on electrodes. Many additives have been proposed but less knowledge is available on the relationship between their molecular structure and interphase stability. This research compares three electrolyte additives with systematic changes in their cyclic ethylene sulfate structures, i.e. 1,3,2−dioxathiolane−2,2−dioxide (DTD), 4−methyl−1,3,2−dioxathiolane−2,2− dioxide (MDTD) and 4−propyl−[1,3,2] dioxathiolane−2,2−dioxide (PDTD) to investigate their effects on the performance of LiNi0.8Co0.1Mn0.1O2/artificial graphite lithium ion pouch cells at high temperature. Comprehensive characterizations reveal that all these additives exhibit similar oxidative and reductive activity, but they lead to diverse long−term cycling performance at 55 °C. The sulfate species derived from the propyl functionalized PDTD form the most effective cathode and anode interphases in preventing electrolyte decomposition and improving cycling capabilities, with capacity retention of 85 % after 900 cycles at 55 °C. Meanwhile, a super stable (3000 cycles), high−capacity (1668 mAh) pouch cell is constructed at 25 °C. This work paves a road to design electrolyte additive more efficiently for high−energy−density LIBs at elevated temperature.
科研通智能强力驱动
Strongly Powered by AbleSci AI