IMFF-Net: An integrated multi-scale feature fusion network for accurate retinal vessel segmentation from fundus images

计算机科学 人工智能 眼底(子宫) 分割 比例(比率) 特征(语言学) 视网膜 融合 计算机视觉 模式识别(心理学) 眼科 地图学 地理 语言学 医学 哲学
作者
Mingtao Liu,Yunyu Wang,Lei Wang,Shunbo Hu,Xing Wang,Qingman Ge
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:91: 105980-105980 被引量:27
标识
DOI:10.1016/j.bspc.2024.105980
摘要

Extracting vascular structures from retinal fundus images plays a critical role in the early diagnosis and long-term treatment of ophthalmic diseases. Traditional manual segmentation of retinal vessels is a time-consuming process that demands a high level of expertise. In recent years, deep learning has made significant strides in retinal vessel segmentation, but it still faces certain challenges in fine vessel segmentation, such as the loss of spatial information resulting from multi-level feature extraction and the blurring of fine structural segmentation. To address these issues, we propose a multi-scale feature fusion segmentation network known as IMFF-Net. Specifically, we propose two fusion blocks in the IMFF-Net. Firstly, an Attention Pooling Feature Fusion (APF) block is proposed, which consists of Max Pooling, and Average Pooling and incorporates the SE block. This design effectively mitigates the problem of spatial information loss stemming from multiple pooling operations. Secondly, the Upsampling and Downsampling Feature Fusion block (UDFF) is proposed to weightedly merge the feature maps of each downsampling with the upsampling feature maps, thereby facilitating the precise segmentation of fine structures. To validate the performance of the proposed IMFF-Net, we conducted experiments on three retinal blood vessel segmentation datasets: DRIVE, STARE, and CHASE_DB1. IMFF-Net achieved outstanding results on the test set of these three public datasets with accuracies of 0.9621, 0.9707, and 0.9730, and sensitivities of 0.8575, 0.8634, and 0.8048, respectively. These results demonstrate the superior performance of IMFF-Net compared to the backbone network and other state-of-the-art methods. Our code is available at: https://github.com/wangyunyuwyy/IMFF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
njgi发布了新的文献求助10
1秒前
1秒前
猜对了就告诉你完成签到 ,获得积分10
2秒前
3秒前
wise111发布了新的文献求助10
3秒前
汉堡包应助晴朗采纳,获得10
4秒前
xiaoqi发布了新的文献求助10
5秒前
执着绿草发布了新的文献求助10
8秒前
jixiaoran完成签到,获得积分10
8秒前
9秒前
笑点低关注了科研通微信公众号
10秒前
10秒前
阿坤完成签到 ,获得积分10
12秒前
蓝天应助容若采纳,获得10
12秒前
充电宝应助leez采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助30
14秒前
15秒前
小蘑菇应助刘言采纳,获得10
17秒前
17秒前
搞怪山晴发布了新的文献求助10
17秒前
19秒前
JamesPei应助直率的问筠采纳,获得10
20秒前
朻安完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
星辰大海应助黑YA采纳,获得10
22秒前
23秒前
chenhouhan发布了新的文献求助20
23秒前
24秒前
24秒前
leez发布了新的文献求助10
25秒前
哎呦你干嘛完成签到,获得积分20
25秒前
Su发布了新的文献求助10
26秒前
pluto应助独特的绮山采纳,获得10
26秒前
wanci应助星星采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595