IMFF-Net: An integrated multi-scale feature fusion network for accurate retinal vessel segmentation from fundus images

计算机科学 人工智能 眼底(子宫) 分割 比例(比率) 特征(语言学) 视网膜 融合 计算机视觉 模式识别(心理学) 眼科 地图学 地理 语言学 医学 哲学
作者
Mingtao Liu,Yunyu Wang,Lei Wang,Shunbo Hu,Xing Wang,Qingman Ge
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 105980-105980 被引量:10
标识
DOI:10.1016/j.bspc.2024.105980
摘要

Extracting vascular structures from retinal fundus images plays a critical role in the early diagnosis and long-term treatment of ophthalmic diseases. Traditional manual segmentation of retinal vessels is a time-consuming process that demands a high level of expertise. In recent years, deep learning has made significant strides in retinal vessel segmentation, but it still faces certain challenges in fine vessel segmentation, such as the loss of spatial information resulting from multi-level feature extraction and the blurring of fine structural segmentation. To address these issues, we propose a multi-scale feature fusion segmentation network known as IMFF-Net. Specifically, we propose two fusion blocks in the IMFF-Net. Firstly, an Attention Pooling Feature Fusion (APF) block is proposed, which consists of Max Pooling, and Average Pooling and incorporates the SE block. This design effectively mitigates the problem of spatial information loss stemming from multiple pooling operations. Secondly, the Upsampling and Downsampling Feature Fusion block (UDFF) is proposed to weightedly merge the feature maps of each downsampling with the upsampling feature maps, thereby facilitating the precise segmentation of fine structures. To validate the performance of the proposed IMFF-Net, we conducted experiments on three retinal blood vessel segmentation datasets: DRIVE, STARE, and CHASE_DB1. IMFF-Net achieved outstanding results on the test set of these three public datasets with accuracies of 0.9621, 0.9707, and 0.9730, and sensitivities of 0.8575, 0.8634, and 0.8048, respectively. These results demonstrate the superior performance of IMFF-Net compared to the backbone network and other state-of-the-art methods. Our code is available at: https://github.com/wangyunyuwyy/IMFF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小赵发布了新的文献求助10
1秒前
kk关闭了kk文献求助
1秒前
留胡子的涵菡完成签到,获得积分10
1秒前
1秒前
Hello应助嘎嘣脆采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
风中冰香应助刻苦蚂蚁采纳,获得10
2秒前
3秒前
NexusExplorer应助刻苦蚂蚁采纳,获得10
3秒前
GINKGO完成签到,获得积分10
3秒前
加油吧弟弟完成签到,获得积分10
3秒前
思源应助科研通管家采纳,获得10
3秒前
wyqking发布了新的文献求助10
4秒前
玛卡巴卡发布了新的文献求助10
4秒前
屈初雪完成签到,获得积分10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
Ian完成签到,获得积分10
4秒前
cui发布了新的文献求助10
4秒前
连灵竹完成签到,获得积分0
4秒前
KATSU关注了科研通微信公众号
5秒前
5秒前
平淡的文龙完成签到,获得积分10
5秒前
6秒前
无花果应助科研通管家采纳,获得10
6秒前
甘雨露完成签到,获得积分20
6秒前
6秒前
Akim应助不想开学吧采纳,获得10
6秒前
6秒前
解剖六楼那小哥完成签到 ,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Zx_1993应助科研通管家采纳,获得10
8秒前
scxl2000发布了新的文献求助10
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
所所应助科研通管家采纳,获得10
9秒前
赵真完成签到,获得积分10
9秒前
上官若男应助端庄凌文采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182