IMFF-Net: An integrated multi-scale feature fusion network for accurate retinal vessel segmentation from fundus images

计算机科学 人工智能 眼底(子宫) 分割 比例(比率) 特征(语言学) 视网膜 融合 计算机视觉 模式识别(心理学) 眼科 地图学 地理 语言学 医学 哲学
作者
Mingtao Liu,Yunyu Wang,Lei Wang,Shunbo Hu,Xing Wang,Qingman Ge
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:91: 105980-105980 被引量:27
标识
DOI:10.1016/j.bspc.2024.105980
摘要

Extracting vascular structures from retinal fundus images plays a critical role in the early diagnosis and long-term treatment of ophthalmic diseases. Traditional manual segmentation of retinal vessels is a time-consuming process that demands a high level of expertise. In recent years, deep learning has made significant strides in retinal vessel segmentation, but it still faces certain challenges in fine vessel segmentation, such as the loss of spatial information resulting from multi-level feature extraction and the blurring of fine structural segmentation. To address these issues, we propose a multi-scale feature fusion segmentation network known as IMFF-Net. Specifically, we propose two fusion blocks in the IMFF-Net. Firstly, an Attention Pooling Feature Fusion (APF) block is proposed, which consists of Max Pooling, and Average Pooling and incorporates the SE block. This design effectively mitigates the problem of spatial information loss stemming from multiple pooling operations. Secondly, the Upsampling and Downsampling Feature Fusion block (UDFF) is proposed to weightedly merge the feature maps of each downsampling with the upsampling feature maps, thereby facilitating the precise segmentation of fine structures. To validate the performance of the proposed IMFF-Net, we conducted experiments on three retinal blood vessel segmentation datasets: DRIVE, STARE, and CHASE_DB1. IMFF-Net achieved outstanding results on the test set of these three public datasets with accuracies of 0.9621, 0.9707, and 0.9730, and sensitivities of 0.8575, 0.8634, and 0.8048, respectively. These results demonstrate the superior performance of IMFF-Net compared to the backbone network and other state-of-the-art methods. Our code is available at: https://github.com/wangyunyuwyy/IMFF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
1秒前
正直尔曼完成签到,获得积分10
1秒前
yan发布了新的文献求助10
2秒前
张远最帅完成签到,获得积分10
2秒前
夜雨听笑完成签到,获得积分10
2秒前
干净的冷安应助蝴蝶采纳,获得10
2秒前
夹心发布了新的文献求助10
3秒前
大帅比发布了新的文献求助10
3秒前
3秒前
3秒前
着急的猴完成签到 ,获得积分10
3秒前
legend完成签到,获得积分0
3秒前
木昆完成签到 ,获得积分10
3秒前
852应助要减肥冰菱采纳,获得10
3秒前
Lillianzhu1完成签到,获得积分10
3秒前
holly发布了新的文献求助10
4秒前
屈洪娇发布了新的文献求助10
4秒前
joeqin完成签到,获得积分10
4秒前
东东完成签到,获得积分10
4秒前
yyyy完成签到,获得积分10
4秒前
YY完成签到,获得积分10
4秒前
文静的电灯胆完成签到,获得积分10
4秒前
澜冰发布了新的文献求助10
4秒前
4秒前
caicai发布了新的文献求助10
5秒前
好困应助外向的夜梦采纳,获得10
5秒前
5秒前
5秒前
yuk完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
结构小工发布了新的文献求助10
7秒前
lyyyyyyyy发布了新的文献求助10
7秒前
涛涛完成签到,获得积分20
7秒前
李爱国应助李飞龙采纳,获得10
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444