IMFF-Net: An integrated multi-scale feature fusion network for accurate retinal vessel segmentation from fundus images

计算机科学 人工智能 眼底(子宫) 分割 比例(比率) 特征(语言学) 视网膜 融合 计算机视觉 模式识别(心理学) 眼科 地图学 地理 医学 语言学 哲学
作者
Mingtao Liu,Yunyu Wang,Lei Wang,Shunbo Hu,Xing Wang,Qingman Ge
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 105980-105980 被引量:10
标识
DOI:10.1016/j.bspc.2024.105980
摘要

Extracting vascular structures from retinal fundus images plays a critical role in the early diagnosis and long-term treatment of ophthalmic diseases. Traditional manual segmentation of retinal vessels is a time-consuming process that demands a high level of expertise. In recent years, deep learning has made significant strides in retinal vessel segmentation, but it still faces certain challenges in fine vessel segmentation, such as the loss of spatial information resulting from multi-level feature extraction and the blurring of fine structural segmentation. To address these issues, we propose a multi-scale feature fusion segmentation network known as IMFF-Net. Specifically, we propose two fusion blocks in the IMFF-Net. Firstly, an Attention Pooling Feature Fusion (APF) block is proposed, which consists of Max Pooling, and Average Pooling and incorporates the SE block. This design effectively mitigates the problem of spatial information loss stemming from multiple pooling operations. Secondly, the Upsampling and Downsampling Feature Fusion block (UDFF) is proposed to weightedly merge the feature maps of each downsampling with the upsampling feature maps, thereby facilitating the precise segmentation of fine structures. To validate the performance of the proposed IMFF-Net, we conducted experiments on three retinal blood vessel segmentation datasets: DRIVE, STARE, and CHASE_DB1. IMFF-Net achieved outstanding results on the test set of these three public datasets with accuracies of 0.9621, 0.9707, and 0.9730, and sensitivities of 0.8575, 0.8634, and 0.8048, respectively. These results demonstrate the superior performance of IMFF-Net compared to the backbone network and other state-of-the-art methods. Our code is available at: https://github.com/wangyunyuwyy/IMFF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
eater完成签到,获得积分10
3秒前
4秒前
6秒前
北彧发布了新的文献求助10
7秒前
迷你的颖完成签到,获得积分10
10秒前
11秒前
流飒完成签到,获得积分10
14秒前
16秒前
18秒前
泥娃娃发布了新的文献求助10
18秒前
19秒前
秘小先儿发布了新的文献求助10
19秒前
19秒前
善学以致用应助Handsome采纳,获得10
19秒前
高兴的小完成签到,获得积分10
19秒前
活力的静曼完成签到,获得积分10
20秒前
21秒前
彭于晏应助害羞映容采纳,获得10
21秒前
的奖学金喜欢喜欢大呼小叫难受完成签到 ,获得积分10
21秒前
22秒前
23秒前
23秒前
24秒前
25秒前
28秒前
28秒前
28秒前
28秒前
29秒前
ygx完成签到,获得积分10
30秒前
halogen发布了新的文献求助10
30秒前
搜集达人应助铁观音采纳,获得10
31秒前
YoursSummer发布了新的文献求助10
32秒前
wlin发布了新的文献求助10
32秒前
33秒前
李健应助坦率的海豚采纳,获得10
34秒前
34秒前
量子星尘发布了新的文献求助10
34秒前
凶狠的谷蓝完成签到,获得积分10
35秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182