过电位
析氧
电催化剂
催化作用
硒化物
纳米棒
材料科学
纳米技术
钴
氢氧化物
化学工程
双金属片
电子结构
电负性
化学
无机化学
物理化学
电化学
计算化学
电极
硒
有机化学
工程类
冶金
作者
Hao Wang,Xueya Deng,A.R. Bari,Mingzheng Gu,Man Lin,Gaoyun An,Xiaomin Huang,Xiaojun Zhang
标识
DOI:10.1016/j.jcis.2024.01.026
摘要
In order to enhance the energy efficiency of water electrolysis, it is imperative to devise electrocatalysts for oxygen evolution reaction that are both non-precious metal-based and highly efficient. Efficient catalyst design is generally based on electronic structural engineering. Considering the electronegativity disparity between selenium (Se) and tellurium (Te), the tunable bandgaps, and the conductive metallic nature of Te. We designed a material wherein Te atoms are uniformly doped onto the surface of Cobalt tetra selenide (Co3Se4) nanorods, leading to the synthesis of a defect-rich material. Experimental results demonstrate that Te doping in Co3Se4 increases active sites and optimizes the electronic structure of Co cations, enhancing the design of multi-defect structures. This promotes the generation of the Co(oxy) hydroxide (CoOOH) active phase, enhancing catalytic activity by maximizing the binding strength between Co sites and oxygenated intermediates. Te-Co3Se4 nanorods exhibit good catalytic activity for oxygen evolution reactions, with an overpotential of 269 mV at a driving current density of 50 mA cm−2 and excellent stability in alkaline media (over 100 h). This discovery indicates the feasibility of strategically combining various imperfect structures, thereby unlocking the latent potential of diverse catalysts in electrocatalytic reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI