A CNN-LSTM based deep learning model with high accuracy and robustness for carbon price forecasting: A case of Shenzhen's carbon market in China

稳健性(进化) 计算机科学 人工智能 深度学习 Boosting(机器学习) 机器学习 生物化学 基因 化学
作者
Hanxiao Shi,Anlei Wei,Xiaozhen Xu,Yaqi Zhu,Hao Hu,Songjun Tang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:352: 120131-120131 被引量:23
标识
DOI:10.1016/j.jenvman.2024.120131
摘要

Accurately predicting carbon trading prices using deep learning models can help enterprises understand the operational mechanisms and regulations of the carbon market. This is crucial for expanding the industries covered by the carbon market and ensuring its stable and healthy development. To ensure the accuracy and reliability of the predictions in practical applications, it is important to evaluate the model's robustness. In this paper, we built models with different parameters to predict carbon trading prices, and proposed models with high accuracy and robustness. The accuracy of the models was assessed using traditional survey indicators. The robustness of the CNN-LSTM model was compared to that of the LSTM model using Z-scores. The CNN-LSTM model with the best prediction performance was compared to a single LSTM model, resulting in a 9% reduction in MSE and a 0.0133 shortening of the Z-score range. Furthermore, the CNN-LSTM model achieved a level of accuracy comparable to other popular models such as CEEMDAN, Boosting, and GRU. It also demonstrated a training speed improvement of at least 40% compared to the aforementioned methods. These results suggest that the CNN-LSTM enhances model resilience. Moreover, the practicality of using Z-score to evaluate model robustness is confirmed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的火完成签到 ,获得积分10
刚刚
一心想出文章完成签到,获得积分10
1秒前
2秒前
万能图书馆应助雷子采纳,获得10
4秒前
兜兜完成签到 ,获得积分10
4秒前
奶糖喵完成签到 ,获得积分10
5秒前
LM完成签到,获得积分10
7秒前
7秒前
zhangxr发布了新的文献求助10
8秒前
9秒前
oceanao应助靓丽安珊采纳,获得10
11秒前
hao发布了新的文献求助10
13秒前
夕赣完成签到 ,获得积分10
14秒前
16秒前
三木完成签到 ,获得积分10
16秒前
晨雾完成签到 ,获得积分10
19秒前
王螺丝完成签到,获得积分10
19秒前
雷子发布了新的文献求助10
20秒前
lyne完成签到 ,获得积分10
21秒前
21秒前
zhang完成签到,获得积分10
23秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
tramp应助科研通管家采纳,获得10
25秒前
哎嘿应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
tramp应助科研通管家采纳,获得20
25秒前
哎嘿应助科研通管家采纳,获得10
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
梓泽丘墟应助科研通管家采纳,获得10
26秒前
Gilana应助科研通管家采纳,获得20
26秒前
小马甲应助科研通管家采纳,获得10
26秒前
coco应助科研通管家采纳,获得20
26秒前
哎嘿应助科研通管家采纳,获得10
26秒前
61forsci完成签到,获得积分10
28秒前
靓丽安珊完成签到,获得积分10
29秒前
纯真书兰完成签到,获得积分10
30秒前
LONG完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813377
关于积分的说明 7900197
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316595
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175