A CNN-LSTM based deep learning model with high accuracy and robustness for carbon price forecasting: A case of Shenzhen's carbon market in China

稳健性(进化) 计算机科学 人工智能 深度学习 Boosting(机器学习) 机器学习 生物化学 基因 化学
作者
Hanxiao Shi,Anlei Wei,Xiaozhen Xu,Yaqi Zhu,Hao Hu,Songjun Tang
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:352: 120131-120131 被引量:47
标识
DOI:10.1016/j.jenvman.2024.120131
摘要

Accurately predicting carbon trading prices using deep learning models can help enterprises understand the operational mechanisms and regulations of the carbon market. This is crucial for expanding the industries covered by the carbon market and ensuring its stable and healthy development. To ensure the accuracy and reliability of the predictions in practical applications, it is important to evaluate the model's robustness. In this paper, we built models with different parameters to predict carbon trading prices, and proposed models with high accuracy and robustness. The accuracy of the models was assessed using traditional survey indicators. The robustness of the CNN-LSTM model was compared to that of the LSTM model using Z-scores. The CNN-LSTM model with the best prediction performance was compared to a single LSTM model, resulting in a 9% reduction in MSE and a 0.0133 shortening of the Z-score range. Furthermore, the CNN-LSTM model achieved a level of accuracy comparable to other popular models such as CEEMDAN, Boosting, and GRU. It also demonstrated a training speed improvement of at least 40% compared to the aforementioned methods. These results suggest that the CNN-LSTM enhances model resilience. Moreover, the practicality of using Z-score to evaluate model robustness is confirmed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的龙猫完成签到,获得积分20
1秒前
wuce发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
天空完成签到,获得积分10
4秒前
李笑完成签到,获得积分10
5秒前
Ariel发布了新的文献求助10
6秒前
7秒前
Ning完成签到,获得积分10
8秒前
竹筏过海应助Steven采纳,获得30
9秒前
9秒前
丹曦发布了新的文献求助10
9秒前
进击的研狗完成签到 ,获得积分10
9秒前
JamesPei应助小高采纳,获得10
10秒前
燕一刀发布了新的文献求助10
11秒前
Mistletoe完成签到 ,获得积分10
11秒前
星辰大海应助liuss采纳,获得10
11秒前
12秒前
12秒前
13秒前
XinTKW完成签到,获得积分10
13秒前
14秒前
16秒前
Jieh发布了新的文献求助10
16秒前
16秒前
蓉蓉完成签到,获得积分10
16秒前
16秒前
XinTKW发布了新的文献求助10
17秒前
Amazing_Grace发布了新的文献求助30
17秒前
Eliauk发布了新的文献求助30
19秒前
20秒前
kx完成签到,获得积分10
20秒前
大咸鱼发布了新的文献求助100
20秒前
梓桐完成签到,获得积分10
21秒前
豆豆发布了新的文献求助10
21秒前
笑点低的凌瑶完成签到,获得积分10
21秒前
21秒前
ZX0501发布了新的文献求助10
21秒前
石翎完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629