苯并噻唑
生物信息学
对接(动物)
化学
分子动力学
计算生物学
分子模型
立体化学
计算化学
生物化学
生物
医学
护理部
基因
作者
Shridhar Deshpande N,S. R. NAIK,Udaya Kumar D.,Sudeep D. Ghate,Sheshagiri R. Dixit,Abhimanyu Awasthi,B. C. Revanasiddappa
标识
DOI:10.1080/07391102.2023.2294836
摘要
Breast cancer stands as the most prevalent malignancy among the female populace. One of the pivotal domains in the therapeutic landscape of breast cancer revolves around the precise targeting of the p53-MDM2 inhibitory pathway. The advent of p53-MDM2 inhibition in the context of developing treatments for breast cancer marks a significant stride. In the quest for enhancing the efficacy of p53-MDM2 inhibition against breast cancer, a new series of benzothiazole compounds (B1-B30) was designed through in-silico methodologies in the present work. Using Schrodinger Maestro, the compounds underwent molecular docking assessments against the p53-MDM2 target (PDB: 4OGT). Compared to reference compounds, B25 and B12 exhibited notably elevated glide scores. Extensive in-silico studies, including ADMET and toxicity evaluations, were performed to predict pharmacokinetics, drug likeness, and toxicity. All compounds adhered to Lipinski criteria, signifying favorable oral drug properties. The MM-GBSA analysis indicated consistent binding free energies. Molecular dynamics simulations for B25 over 200 ns assessed complex stability and interactions. In summary, these compounds exhibit potential for future cancer therapy medication development.Communicated by Ramaswamy H. Sarma.
科研通智能强力驱动
Strongly Powered by AbleSci AI