制氢
分解水
析氧
材料科学
化学工程
锡
双功能
催化作用
纳米技术
化学
无机化学
冶金
电极
电化学
光催化
生物化学
物理化学
工程类
作者
Aparna Sajeev,Muthukumar Perumalsamy,Vijaykumar Elumalai,Arunprasath Sathyaseelan,Saj Anandhan Ayyappan,Monunith Anithkumar,Sang‐Jae Kim
标识
DOI:10.1002/smsc.202300222
摘要
Industrialization of green hydrogen production through electrolyzers is hindered by cost‐effective electrocatalysts and sluggish oxygen evolution reaction (OER). Herein, a facile one‐step hydrothermal technique for the in situ growth of non‐noble tin chalcogenides and their heterostructures on nickel foam (NF) as trifunctional electrocatalysts for hydrogen evolution reaction (HER), OER, and methanol oxidation reaction (MOR) is detailed. Among them, the heterostructured SnSe/SnTe/NF outperforms all others and recently reported catalysts, boasting an impressively low potential of −0.077, 1.51, and 1.33 V versus reversible hydrogen electrode to achieve 10 mA cm −2 for HER, OER, and MOR. Owing to the rod‐like morphology with hetero‐phases for enhancing the performance. Furthermore, a hybrid MOR‐mediated water electrolyzer requiring only 1.49 V to achieve 10 mA cm −2 with value‐added formate is introduced and traditional water electrolyzer is outperformed. Additionally, a zero‐gap commercial anion‐exchange membrane water electrolyzer (AEMWE) with bifunctional SnSe/SnTe/NF electrodes is tested, successfully achieving an industrially required 1 A cm −2 at a low potential of 1.93 V at 70 °C. Moreover, AEMWE using a windmill is powered and H 2 and O 2 production with wind speed is measured. Overall, this work paves the development of unexplored tin chalcogenide heterostructure as a potent candidate for cost‐effective, energy‐efficient, and carbon‐neutral hydrogen production.
科研通智能强力驱动
Strongly Powered by AbleSci AI