A gated cross-domain collaborative network for underwater object detection

水下 能见度 计算机科学 人工智能 特征(语言学) 计算机视觉 对比度(视觉) 领域(数学分析) 目标检测 透视图(图形) 特征提取 对象(语法) 图像融合 图像(数学) 模式识别(心理学) 地理 数学 哲学 气象学 数学分析 考古 语言学
作者
Linhui Dai,Hong Liu,Pinhao Song,Mengyuan Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:149: 110222-110222 被引量:11
标识
DOI:10.1016/j.patcog.2023.110222
摘要

Underwater object detection (UOD) plays a significant role in aquaculture and marine environmental protection. Considering the challenges posed by low contrast and low-light conditions in underwater environments, several underwater image enhancement (UIE) methods have been proposed to improve the quality of underwater images. However, only using the enhanced images does not improve the performance of UOD, since it may unavoidably remove or alter critical patterns and details of underwater objects. In contrast, we believe that exploring the complementary information from the two domains is beneficial for UOD. The raw image preserves the natural characteristics of the scene and texture information of the objects, while the enhanced image improves the visibility of underwater objects. Based on this perspective, we propose a Gated Cross-domain Collaborative Network (GCC-Net) to address the challenges of poor visibility and low contrast in underwater environments, which comprises three dedicated components. Firstly, a real-time UIE method is employed to generate enhanced images, which can improve the visibility of objects in low-contrast areas. Secondly, a cross-domain feature interaction module is introduced to facilitate the interaction and mine complementary information between raw and enhanced image features. Thirdly, to prevent the contamination of unreliable generated results, a gated feature fusion module is proposed to adaptively control the fusion ratio of cross-domain information. Our method presents a new UOD paradigm from the perspective of cross-domain information interaction and fusion. Experimental results demonstrate that the proposed GCC-Net achieves state-of-the-art performance on four underwater datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
青衣北风发布了新的文献求助10
3秒前
香蕉觅云应助bofu采纳,获得10
4秒前
大聪明陈发布了新的文献求助10
4秒前
一一完成签到,获得积分10
4秒前
dbq完成签到 ,获得积分10
6秒前
6秒前
swordlee发布了新的文献求助100
7秒前
8秒前
10秒前
努力学习完成签到,获得积分10
12秒前
12秒前
sci发布了新的文献求助10
12秒前
我是老大应助大聪明陈采纳,获得10
12秒前
12秒前
包钰韬完成签到,获得积分10
13秒前
bkagyin应助bofu采纳,获得10
13秒前
hs完成签到,获得积分10
13秒前
14秒前
orixero应助巴纳拉采纳,获得10
14秒前
杂菜流完成签到,获得积分10
15秒前
干饭啦完成签到,获得积分10
15秒前
努力学习发布了新的文献求助10
15秒前
16秒前
火星上雨珍完成签到,获得积分10
17秒前
18秒前
niuuuuu完成签到,获得积分10
19秒前
脑洞疼应助想顺利毕业采纳,获得10
20秒前
吃了吃了发布了新的文献求助10
20秒前
20秒前
21秒前
香蕉觅云应助bofu采纳,获得10
21秒前
小飞七应助机灵的秋凌采纳,获得10
22秒前
22秒前
swordlee发布了新的文献求助10
23秒前
Suzy发布了新的文献求助10
26秒前
巴纳拉发布了新的文献求助10
27秒前
29秒前
30秒前
玫瑰延误了花期应助bofu采纳,获得10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546412
求助须知:如何正确求助?哪些是违规求助? 3123558
关于积分的说明 9355739
捐赠科研通 2822124
什么是DOI,文献DOI怎么找? 1551271
邀请新用户注册赠送积分活动 723287
科研通“疑难数据库(出版商)”最低求助积分说明 713690