亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Conversion from Subjective Cognitive Decline to Mild Cognitive Impairment and Alzheimer’s Disease Dementia Using Ensemble Machine Learning

认知功能衰退 痴呆 认知障碍 阿尔茨海默病 认知 心理学 认知心理学 医学 老年学 疾病 精神科 内科学
作者
Marta M. Dolcet-Negre,Laura Imaz,Reyes García-de-Eulate,Glòria Martí,Marta Fernández‐Matarrubia,Pablo Domínguez,María A. Fernández‐Seara,Mario Riverol
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:93 (1): 125-140 被引量:2
标识
DOI:10.3233/jad-221002
摘要

Subjective cognitive decline (SCD) may represent a preclinical stage of Alzheimer's disease (AD). Predicting progression of SCD patients is of great importance in AD-related research but remains a challenge.To develop and implement an ensemble machine learning (ML) algorithm to identify SCD subjects at risk of conversion to mild cognitive impairment (MCI) or AD.Ninety-nine SCD patients were included. Thirty-two progressed to MCI/AD, while 67 remained stable. To minimize the effect of class imbalance, both classes were balanced, and sensitivity was taken as evaluation metric. Bagging and boosting ML models were developed by using socio-demographic and clinical information, Mini-Mental State Examination and Geriatric Depression Scale (GDS) scores (feature-set 1a); socio-demographic characteristics and neuropsychological tests scores (feature-set 1b) and regional magnetic resonance imaging grey matter volumes (feature-set 2). The most relevant variables were combined to find the best model.Good prediction performances were obtained with feature-sets 1a and 2. The most relevant variables (variable importance exceeding 20%) were: Age, GDS, and grey matter volumes measured in four cortical regions of interests. Their combination provided the optimal classification performance (highest sensitivity and specificity) ensemble ML model, Extreme Gradient Boosting with over-sampling of the minority class, with performance metrics: sensitivity = 1.00, specificity = 0.92 and area-under-the-curve = 0.96. The median values based on fifty random train/test splits were sensitivity = 0.83 (interquartile range (IQR) = 0.17), specificity = 0.77 (IQR = 0.23) and area-under-the-curve = 0.75 (IQR = 0.11).A high-performance algorithm that could be translatable into practice was able to predict SCD conversion to MCI/AD by using only six predictive variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
情怀应助五香采纳,获得10
40秒前
五香完成签到,获得积分10
1分钟前
1分钟前
五香发布了新的文献求助10
1分钟前
1分钟前
ll77完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
3分钟前
3分钟前
小脚丫完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
帅狗完成签到,获得积分10
5分钟前
帅狗发布了新的文献求助10
5分钟前
打打应助帅狗采纳,获得10
5分钟前
5分钟前
积极废物完成签到 ,获得积分10
5分钟前
玄之又玄完成签到,获得积分10
5分钟前
6分钟前
6分钟前
7分钟前
7分钟前
一二完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743751
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867