Vibration control in fluid conveying pipes using NES with nonlinear damping

振动 非线性系统 伽辽金法 分叉 机械 控制理论(社会学) 振动控制 流体力学 谐波平衡 阻尼器 流离失所(心理学) 阻尼转矩 物理 工程类 结构工程 声学 计算机科学 控制(管理) 量子力学 人工智能 心理学 直接转矩控制 电压 感应电动机 心理治疗师
作者
Rony Philip,B. Santhosh,Bipin Balaram,Jan Awrejcewicz
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:194: 110250-110250 被引量:21
标识
DOI:10.1016/j.ymssp.2023.110250
摘要

Control of vibrations in fluid transmitting pipes has emerged as a major engineering challenge. For higher fluid flow rate, support vibration, and excitation load, the vibrations in pipes that convey fluid can be complex and, at times, catastrophic. Recent works have demonstrated that Nonlinear Energy Sink (NES) can be effectively employed for passive vibration control of fluid-conveying pipes. The present work explores the possibility of using NES with nonlinear damping to overcome the limitations of conventional NES-based vibration control in fluid-transmitting pipes. Geometric nonlinear damping (velocity-displacement dependent damping), whose physical realization is possible by a suitable geometric configuration of the linear viscous damper, is considered in this study. Euler–Bernoulli beam theory models the fluid conveying pipe under an external harmonic load. The reduced order model obtained through the Galerkin procedure is investigated analytically using the complex averaging method. The occurrence of strongly modulated and weakly modulated responses are demonstrated, and their effect on vibration mitigation is shown. The frequency range exhibiting strongly modulated response in the system is significantly increased with the addition of nonlinear damping to NES. This assists in mitigating pipe vibrations by initiating targeted energy transfer from pipe to NES. The Saddle–Node and Hopf bifurcation boundaries in the model are identified using the slow-flow dynamics obtained by complex averaging. The effect of nonlinear damping, external excitation, the location of NES, and the flow rate on the bifurcation boundaries are investigated in detail. It is shown that the external excitation needed to trigger Saddle–Node bifurcation is largely reduced for NES having nonlinear damping. Furthermore, a study of Hopf bifurcation in the frequency domain shows that using NES with nonlinear damping significantly decreases the frequency range in which high-amplitude isolated solutions occur. The method of multiple scales is used to derive the analytical expression for the slow invariant manifold of the pipe-NES system. The vibration suppression mechanism and the occurrence of strongly modulated responses are explained with the help of flow on slow invariant manifolds. A comparison of the topology of the slow invariant manifolds shows that using nonlinear damping with NES substantially reduces the vibration amplitude of the pipe structure. The percentage of energy transferred to the NES is quantified to show the effectiveness of the proposed absorber over normal NES for different flow speeds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林北bei发布了新的文献求助10
刚刚
你好发布了新的文献求助10
1秒前
ABC的风格完成签到,获得积分10
1秒前
景秋灵完成签到,获得积分10
1秒前
Yangon完成签到,获得积分20
1秒前
2秒前
石本松发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
Hello应助Jie_Zhang采纳,获得10
3秒前
DDd完成签到 ,获得积分10
3秒前
可爱的函函应助叙温雨采纳,获得10
4秒前
小蘑菇应助洪峰采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
科研通AI6.1应助Shamsallah采纳,获得10
6秒前
李优秀完成签到,获得积分10
7秒前
7秒前
kuandong发布了新的文献求助10
7秒前
Lucas应助直率的外套采纳,获得10
7秒前
7秒前
土豆发布了新的文献求助10
7秒前
7秒前
icey发布了新的文献求助20
8秒前
科研通AI6.1应助景秋灵采纳,获得10
8秒前
8秒前
嵇丹雪完成签到,获得积分10
8秒前
李爱国应助酶什么幺蛾子采纳,获得10
9秒前
甜美元冬发布了新的文献求助10
9秒前
10秒前
Twonej应助自由天荷采纳,获得30
10秒前
10秒前
顾矜应助忆之采纳,获得10
10秒前
10秒前
舒心小凡发布了新的文献求助10
11秒前
孙靖博发布了新的文献求助10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751092
求助须知:如何正确求助?哪些是违规求助? 5466905
关于积分的说明 15368802
捐赠科研通 4890277
什么是DOI,文献DOI怎么找? 2629616
邀请新用户注册赠送积分活动 1577855
关于科研通互助平台的介绍 1534083