CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer With Modality-Correlated Cross-Attention for Brain Tumor Segmentation

计算机科学 人工智能 分割 特征提取 图像分割 模式识别(心理学) 医学影像学 变压器 计算机视觉 工程类 电压 电气工程
作者
Jia Wei Lin,Jiatai Lin,Cheng Lu,Hao Chen,Heather Lin,Bingchao Zhao,Zhenwei Shi,Bingjiang Qiu,Xipeng Pan,Zeyan Xu,Biao Huang,Liang Chen,Guoqiang Han,Zaiyi Liu,Chu Han
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2451-2461 被引量:5
标识
DOI:10.1109/tmi.2023.3250474
摘要

Brain tumor segmentation (BTS) in magnetic resonance image (MRI) is crucial for brain tumor diagnosis, cancer management and research purposes. With the great success of the ten-year BraTS challenges as well as the advances of CNN and Transformer algorithms, a lot of outstanding BTS models have been proposed to tackle the difficulties of BTS in different technical aspects. However, existing studies hardly consider how to fuse the multi-modality images in a reasonable manner. In this paper, we leverage the clinical knowledge of how radiologists diagnose brain tumors from multiple MRI modalities and propose a clinical knowledge-driven brain tumor segmentation model, called CKD-TransBTS. Instead of directly concatenating all the modalities, we re-organize the input modalities by separating them into two groups according to the imaging principle of MRI. A dual-branch hybrid encoder with the proposed modality-correlated cross-attention block (MCCA) is designed to extract the multi-modality image features. The proposed model inherits the strengths from both Transformer and CNN with the local feature representation ability for precise lesion boundaries and long-range feature extraction for 3D volumetric images. To bridge the gap between Transformer and CNN features, we propose a Trans&CNN Feature Calibration block (TCFC) in the decoder. We compare the proposed model with six CNN-based models and six transformer-based models on the BraTS 2021 challenge dataset. Extensive experiments demonstrate that the proposed model achieves state-of-the-art brain tumor segmentation performance compared with all the competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wo_qq111完成签到 ,获得积分10
2秒前
854fycchjh完成签到,获得积分10
2秒前
lxlcx发布了新的文献求助10
2秒前
BAi完成签到,获得积分10
6秒前
baihehuakai完成签到 ,获得积分10
7秒前
星空完成签到 ,获得积分10
7秒前
Goodenough完成签到 ,获得积分10
9秒前
Lucas应助浏阳河采纳,获得10
9秒前
科研通AI2S应助BAi采纳,获得10
11秒前
瀚子完成签到,获得积分10
11秒前
wqq完成签到 ,获得积分10
12秒前
aaronwang完成签到 ,获得积分10
14秒前
平常莹芝完成签到,获得积分10
16秒前
liuhan完成签到 ,获得积分10
17秒前
19秒前
风风完成签到 ,获得积分10
19秒前
俭朴的世立完成签到,获得积分10
20秒前
lin完成签到,获得积分10
23秒前
aaronwang关注了科研通微信公众号
23秒前
浏阳河发布了新的文献求助10
24秒前
酷炫的红牛完成签到,获得积分10
25秒前
25秒前
wuyan204完成签到 ,获得积分10
25秒前
Alexbirchurros完成签到 ,获得积分10
25秒前
xinyi完成签到,获得积分10
28秒前
大模型应助zyy_luck采纳,获得10
30秒前
达古冰川发布了新的文献求助10
30秒前
冷傲凝琴完成签到,获得积分10
31秒前
ykiiii完成签到,获得积分10
31秒前
浏阳河完成签到,获得积分10
31秒前
小树叶完成签到 ,获得积分10
32秒前
Cao完成签到 ,获得积分10
34秒前
36秒前
阳光的幻雪完成签到 ,获得积分10
42秒前
lxy2002完成签到,获得积分10
42秒前
右旋王小二完成签到,获得积分10
43秒前
殷勤的梦秋完成签到,获得积分10
43秒前
走四方应助科研通管家采纳,获得10
44秒前
Xtals应助科研通管家采纳,获得10
44秒前
天天快乐应助科研通管家采纳,获得10
44秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795870
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176