Evaluation of deep learning models for classification of asphalt pavement distresses

人工智能 班级(哲学) 人工神经网络 机器学习 卷积神经网络 学习迁移 计算机科学 模棱两可 苦恼 选择(遗传算法) 沥青 模式识别(心理学) 地理 生态学 地图学 生物 程序设计语言
作者
Alex K. Apeagyei,Toyosi Elijah Ademolake,Mark Adom‐Asamoah
出处
期刊:International Journal of Pavement Engineering [Taylor & Francis]
卷期号:24 (1) 被引量:13
标识
DOI:10.1080/10298436.2023.2180641
摘要

Transfer learning (TL) offers a convenient methodology for exploiting the capability of deep convolutional neural networks (DCNNs) for many image classification tasks including the classification of pavement distresses. Seven state-of-the-art DCNNs were retrained to classify asphalt pavement distresses grouped into eight classes using TL techniques. The aim was to evaluate the predictive performances of the selected DCNNs in order to provide some guidelines on selection of DCNNs for pavement application. The results show some existing DCNN's are better than others for developing pavement distress classification models using the specific TL approach adopted in the study. The predictive ability of each model varied depending on distress class as some models with very low overall accuracy showed excellent results for individual distress class(s). Based on a combination of various performance metrics including F1-score, area under ROC curve, optimal operating threshold, training time, and model size, the best performing network had a relative score that was found to be significantly higher than the next two top-performing models. The best-performing networks were characterised by lower proportions of false negative values, low ambiguity scores, and well-defined t-SNE clusters that showed clear separation between the eight different pavement distress classes considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Aaron完成签到,获得积分10
1秒前
pluto应助炎晨采纳,获得20
2秒前
3秒前
吴哔哔发布了新的文献求助10
5秒前
wanci应助nuonuo采纳,获得10
6秒前
9秒前
淡淡文博发布了新的文献求助10
9秒前
上官若男应助啦啦啦采纳,获得10
10秒前
威武大将军完成签到,获得积分10
10秒前
cloud完成签到,获得积分10
11秒前
科研通AI2S应助Don采纳,获得30
12秒前
13秒前
14秒前
Hello应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
李健应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
Monster完成签到 ,获得积分10
16秒前
17秒前
烂漫白桃完成签到,获得积分10
18秒前
PhD-SCAU发布了新的文献求助30
18秒前
nuonuo发布了新的文献求助10
19秒前
汉堡包应助灵巧夜天采纳,获得10
22秒前
科研通AI5应助duole采纳,获得10
23秒前
英姑应助叫滚滚采纳,获得20
23秒前
星星发布了新的文献求助10
24秒前
24秒前
愤怒的山兰完成签到,获得积分10
24秒前
Ava应助好好采纳,获得10
25秒前
hao123发布了新的文献求助10
28秒前
c程序语言完成签到,获得积分10
29秒前
夏毓龙完成签到,获得积分10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425