Genotype Imputation Using K-Nearest Neighbors and Levenshtein Distance Metric

插补(统计学) Levenshtein距离 系统发育树 缺少数据 系统发育中的距离矩阵 遗传距离 数据挖掘 公制(单位) 人工智能 生物 编辑距离 计算机科学 模式识别(心理学) 遗传学 遗传变异 机器学习 生物信息学 基因 运营管理 经济
作者
Nishkal Hundia,Naveed Kabir,Sweksha Mehta,Abhay Pokhriyal,Zhuo En Chua,Arjun Rajaram,Michael Lutz,Amisha Kumar
标识
DOI:10.1109/ictc55196.2022.9952611
摘要

With several new genome sequencing methods such as Next Generation Sequencing (NGS) and nanopore technologies, there exists a wide range of techniques to explore different genetic variants and their impacts. However, these sequences can become degraded as some genotypes are not detected, leading to missing base pair values. Imputing these gaps in the data is essential to analyze the data properly. Some past studies have shown that certain machine learning models have, to some extent, been able to accurately impute the missing values in genotypes. This paper aims to outline an imputation approach created using the K-Nearest Neighbors algorithm and Levenshtein Distance parameters on the Mus genus. This approach involved imputing randomly masked nucleotide bases in any given gene sequence in Mus musculus by using data of the same genes from similar species in the Phylogenetic tree, namely Mus pahari and Mus caroli. Predictions for the missing spaces were generated by comparing a set number of bases before and after a given sequence of missing nucleotide bases in the target species, Mus musculus, to the same number of bases occurring before and after every possible prediction in the similar species using the Levenshtein distance metric. We found that using our proposed algorithm, we were able to predict over 500,000 individual missing bases in the gene sequences of Mus musculus with accuracies up to 87%. The model maintained an accuracy greater than 80% when all the blank spaces (sequences of consecutive blank spaces) were less than 200 characters long.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wenjian7761完成签到,获得积分10
刚刚
缪缪发布了新的文献求助10
2秒前
老实的石头完成签到,获得积分10
2秒前
小吴同学发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
腼腆的若雁完成签到,获得积分10
6秒前
6秒前
fuiee发布了新的文献求助10
6秒前
小开心完成签到,获得积分10
6秒前
北极星完成签到,获得积分10
7秒前
cccc完成签到 ,获得积分10
7秒前
8秒前
Dogged完成签到 ,获得积分10
9秒前
耶啵耶啵完成签到 ,获得积分10
10秒前
mentality完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
VDC应助机智寻雪采纳,获得30
11秒前
11秒前
jack_kunn发布了新的文献求助30
12秒前
13秒前
13秒前
田様应助linkman采纳,获得10
13秒前
zik完成签到 ,获得积分10
14秒前
汉堡包应助纷飞漫天寂寥采纳,获得10
14秒前
开心完成签到 ,获得积分10
15秒前
shuyi发布了新的文献求助10
16秒前
17秒前
enen发布了新的文献求助10
17秒前
17秒前
18秒前
欣怡高发布了新的文献求助10
18秒前
余繁发布了新的文献求助10
21秒前
阿巴巴巴吧完成签到,获得积分10
21秒前
ahh完成签到 ,获得积分10
21秒前
21秒前
无极微光应助Redback采纳,获得20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714