Genotype Imputation Using K-Nearest Neighbors and Levenshtein Distance Metric

插补(统计学) Levenshtein距离 系统发育树 缺少数据 系统发育中的距离矩阵 遗传距离 数据挖掘 公制(单位) 人工智能 生物 编辑距离 计算机科学 模式识别(心理学) 遗传学 遗传变异 机器学习 生物信息学 基因 经济 运营管理
作者
Nishkal Hundia,Naveed Kabir,Sweksha Mehta,Abhay Pokhriyal,Zhuo En Chua,Arjun Rajaram,Michael Lutz,Amisha Kumar
标识
DOI:10.1109/ictc55196.2022.9952611
摘要

With several new genome sequencing methods such as Next Generation Sequencing (NGS) and nanopore technologies, there exists a wide range of techniques to explore different genetic variants and their impacts. However, these sequences can become degraded as some genotypes are not detected, leading to missing base pair values. Imputing these gaps in the data is essential to analyze the data properly. Some past studies have shown that certain machine learning models have, to some extent, been able to accurately impute the missing values in genotypes. This paper aims to outline an imputation approach created using the K-Nearest Neighbors algorithm and Levenshtein Distance parameters on the Mus genus. This approach involved imputing randomly masked nucleotide bases in any given gene sequence in Mus musculus by using data of the same genes from similar species in the Phylogenetic tree, namely Mus pahari and Mus caroli. Predictions for the missing spaces were generated by comparing a set number of bases before and after a given sequence of missing nucleotide bases in the target species, Mus musculus, to the same number of bases occurring before and after every possible prediction in the similar species using the Levenshtein distance metric. We found that using our proposed algorithm, we were able to predict over 500,000 individual missing bases in the gene sequences of Mus musculus with accuracies up to 87%. The model maintained an accuracy greater than 80% when all the blank spaces (sequences of consecutive blank spaces) were less than 200 characters long.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青鸢完成签到,获得积分10
1秒前
1秒前
1秒前
訫乐发布了新的文献求助10
1秒前
lz发布了新的文献求助10
1秒前
郭益博发布了新的文献求助10
2秒前
yyy1234567发布了新的文献求助10
2秒前
打打应助Noblesj采纳,获得10
2秒前
无花果应助927采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
在水一方应助娃哈哈采纳,获得10
4秒前
韩孟霏完成签到,获得积分20
4秒前
西瓜刀发布了新的文献求助10
4秒前
科研通AI6应助美丽的靖雁采纳,获得10
4秒前
wang发布了新的文献求助10
4秒前
之一完成签到,获得积分10
4秒前
Dawn完成签到,获得积分10
4秒前
5秒前
谨慎映冬完成签到,获得积分10
5秒前
宋宋完成签到,获得积分10
6秒前
科学家发布了新的文献求助10
6秒前
111完成签到,获得积分10
7秒前
DanSlobin完成签到,获得积分10
7秒前
桃青发布了新的文献求助10
7秒前
潇洒的半梅完成签到,获得积分10
7秒前
所所应助cold寒采纳,获得10
8秒前
8秒前
CodeCraft应助小小采纳,获得10
9秒前
9秒前
KIKO完成签到,获得积分20
9秒前
笨笨芝麻完成签到,获得积分10
9秒前
秘密完成签到,获得积分10
9秒前
JINGJING完成签到,获得积分20
10秒前
yuman完成签到,获得积分10
10秒前
FashionBoy应助椰子采纳,获得10
10秒前
OMR123完成签到,获得积分10
11秒前
12秒前
12秒前
万能图书馆应助西瓜刀采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5404697
求助须知:如何正确求助?哪些是违规求助? 4523152
关于积分的说明 14092354
捐赠科研通 4436849
什么是DOI,文献DOI怎么找? 2435295
邀请新用户注册赠送积分活动 1427595
关于科研通互助平台的介绍 1405985