Genotype Imputation Using K-Nearest Neighbors and Levenshtein Distance Metric

插补(统计学) Levenshtein距离 系统发育树 缺少数据 系统发育中的距离矩阵 遗传距离 数据挖掘 公制(单位) 人工智能 生物 编辑距离 计算机科学 模式识别(心理学) 遗传学 遗传变异 机器学习 生物信息学 基因 经济 运营管理
作者
Nishkal Hundia,Naveed Kabir,Sweksha Mehta,Abhay Pokhriyal,Zhuo En Chua,Arjun Rajaram,Michael Lutz,Amisha Kumar
标识
DOI:10.1109/ictc55196.2022.9952611
摘要

With several new genome sequencing methods such as Next Generation Sequencing (NGS) and nanopore technologies, there exists a wide range of techniques to explore different genetic variants and their impacts. However, these sequences can become degraded as some genotypes are not detected, leading to missing base pair values. Imputing these gaps in the data is essential to analyze the data properly. Some past studies have shown that certain machine learning models have, to some extent, been able to accurately impute the missing values in genotypes. This paper aims to outline an imputation approach created using the K-Nearest Neighbors algorithm and Levenshtein Distance parameters on the Mus genus. This approach involved imputing randomly masked nucleotide bases in any given gene sequence in Mus musculus by using data of the same genes from similar species in the Phylogenetic tree, namely Mus pahari and Mus caroli. Predictions for the missing spaces were generated by comparing a set number of bases before and after a given sequence of missing nucleotide bases in the target species, Mus musculus, to the same number of bases occurring before and after every possible prediction in the similar species using the Levenshtein distance metric. We found that using our proposed algorithm, we were able to predict over 500,000 individual missing bases in the gene sequences of Mus musculus with accuracies up to 87%. The model maintained an accuracy greater than 80% when all the blank spaces (sequences of consecutive blank spaces) were less than 200 characters long.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴迪氐媂完成签到 ,获得积分10
7秒前
研友_08o2yZ完成签到,获得积分10
14秒前
月亮发布了新的文献求助10
16秒前
达雨应助Tal采纳,获得10
19秒前
紧张的眼睛完成签到 ,获得积分10
20秒前
jjjjchou完成签到,获得积分10
22秒前
22秒前
蔺景轩完成签到 ,获得积分10
24秒前
24秒前
CNAxiaozhu7应助quasar采纳,获得10
25秒前
muky完成签到,获得积分10
25秒前
墨染发布了新的文献求助10
26秒前
大方夏瑶完成签到,获得积分10
36秒前
38秒前
科研通AI6应助Xjx6519采纳,获得10
39秒前
嘻哈师徒完成签到,获得积分10
40秒前
达雨应助Tal采纳,获得10
41秒前
42秒前
小左完成签到 ,获得积分10
42秒前
外翎发布了新的文献求助10
43秒前
嘻哈师徒发布了新的文献求助10
43秒前
顾矜应助bai采纳,获得10
44秒前
Barry完成签到,获得积分10
49秒前
50秒前
Jodie发布了新的文献求助10
51秒前
53秒前
依楼发布了新的文献求助10
54秒前
ding应助Jodie采纳,获得10
56秒前
所所应助冷酷严青采纳,获得10
1分钟前
依楼完成签到,获得积分10
1分钟前
达雨应助Tal采纳,获得10
1分钟前
1分钟前
1分钟前
hcxhch发布了新的文献求助10
1分钟前
xiaofenzi发布了新的文献求助10
1分钟前
1分钟前
浮游应助眼睛大花生采纳,获得10
1分钟前
wanci应助临泉采纳,获得10
1分钟前
根号3完成签到 ,获得积分10
1分钟前
欢喜的跳跳糖完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668834
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514585
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523