Genotype Imputation Using K-Nearest Neighbors and Levenshtein Distance Metric

插补(统计学) Levenshtein距离 系统发育树 缺少数据 系统发育中的距离矩阵 遗传距离 数据挖掘 公制(单位) 人工智能 生物 编辑距离 计算机科学 模式识别(心理学) 遗传学 遗传变异 机器学习 生物信息学 基因 运营管理 经济
作者
Nishkal Hundia,Naveed Kabir,Sweksha Mehta,Abhay Pokhriyal,Zhuo En Chua,Arjun Rajaram,Michael Lutz,Amisha Kumar
标识
DOI:10.1109/ictc55196.2022.9952611
摘要

With several new genome sequencing methods such as Next Generation Sequencing (NGS) and nanopore technologies, there exists a wide range of techniques to explore different genetic variants and their impacts. However, these sequences can become degraded as some genotypes are not detected, leading to missing base pair values. Imputing these gaps in the data is essential to analyze the data properly. Some past studies have shown that certain machine learning models have, to some extent, been able to accurately impute the missing values in genotypes. This paper aims to outline an imputation approach created using the K-Nearest Neighbors algorithm and Levenshtein Distance parameters on the Mus genus. This approach involved imputing randomly masked nucleotide bases in any given gene sequence in Mus musculus by using data of the same genes from similar species in the Phylogenetic tree, namely Mus pahari and Mus caroli. Predictions for the missing spaces were generated by comparing a set number of bases before and after a given sequence of missing nucleotide bases in the target species, Mus musculus, to the same number of bases occurring before and after every possible prediction in the similar species using the Levenshtein distance metric. We found that using our proposed algorithm, we were able to predict over 500,000 individual missing bases in the gene sequences of Mus musculus with accuracies up to 87%. The model maintained an accuracy greater than 80% when all the blank spaces (sequences of consecutive blank spaces) were less than 200 characters long.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助321采纳,获得10
刚刚
刚刚
刚刚
Guoshibo发布了新的文献求助10
1秒前
1秒前
SciGPT应助lixm采纳,获得10
2秒前
xgg发布了新的文献求助10
2秒前
2秒前
渴望挪例聚完成签到,获得积分10
2秒前
xiuuu完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
汉堡包应助Aryac采纳,获得10
3秒前
天天快乐应助热心的易烟采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
test发布了新的文献求助30
5秒前
我是老大应助56357w7采纳,获得10
5秒前
momo发布了新的文献求助10
5秒前
情怀应助典雅海蓝采纳,获得10
5秒前
小蘑菇应助Jnut采纳,获得10
5秒前
星苒发布了新的文献求助10
5秒前
大模型应助大导师采纳,获得10
5秒前
1234556完成签到,获得积分10
6秒前
清浅发布了新的文献求助10
6秒前
星期天发布了新的文献求助10
6秒前
sys549发布了新的文献求助10
6秒前
陈明健发布了新的文献求助10
7秒前
xqgao完成签到,获得积分10
7秒前
YANG发布了新的文献求助10
7秒前
不辍完成签到,获得积分10
8秒前
轻松刚发布了新的文献求助10
8秒前
8秒前
踏雾发布了新的文献求助10
8秒前
PHW完成签到,获得积分10
8秒前
mj完成签到,获得积分20
8秒前
8秒前
科研大佬发布了新的文献求助10
9秒前
安利完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667386
求助须知:如何正确求助?哪些是违规求助? 4885345
关于积分的说明 15119791
捐赠科研通 4826177
什么是DOI,文献DOI怎么找? 2583805
邀请新用户注册赠送积分活动 1537947
关于科研通互助平台的介绍 1496059