重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Genotype Imputation Using K-Nearest Neighbors and Levenshtein Distance Metric

插补(统计学) Levenshtein距离 系统发育树 缺少数据 系统发育中的距离矩阵 遗传距离 数据挖掘 公制(单位) 人工智能 生物 编辑距离 计算机科学 模式识别(心理学) 遗传学 遗传变异 机器学习 生物信息学 基因 经济 运营管理
作者
Nishkal Hundia,Naveed Kabir,Sweksha Mehta,Abhay Pokhriyal,Zhuo En Chua,Arjun Rajaram,Michael Lutz,Amisha Kumar
标识
DOI:10.1109/ictc55196.2022.9952611
摘要

With several new genome sequencing methods such as Next Generation Sequencing (NGS) and nanopore technologies, there exists a wide range of techniques to explore different genetic variants and their impacts. However, these sequences can become degraded as some genotypes are not detected, leading to missing base pair values. Imputing these gaps in the data is essential to analyze the data properly. Some past studies have shown that certain machine learning models have, to some extent, been able to accurately impute the missing values in genotypes. This paper aims to outline an imputation approach created using the K-Nearest Neighbors algorithm and Levenshtein Distance parameters on the Mus genus. This approach involved imputing randomly masked nucleotide bases in any given gene sequence in Mus musculus by using data of the same genes from similar species in the Phylogenetic tree, namely Mus pahari and Mus caroli. Predictions for the missing spaces were generated by comparing a set number of bases before and after a given sequence of missing nucleotide bases in the target species, Mus musculus, to the same number of bases occurring before and after every possible prediction in the similar species using the Levenshtein distance metric. We found that using our proposed algorithm, we were able to predict over 500,000 individual missing bases in the gene sequences of Mus musculus with accuracies up to 87%. The model maintained an accuracy greater than 80% when all the blank spaces (sequences of consecutive blank spaces) were less than 200 characters long.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致的白桃完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
TeaFace发布了新的文献求助10
2秒前
lh345769764发布了新的文献求助10
2秒前
浮游应助大帅哥采纳,获得10
2秒前
想早点退休完成签到,获得积分10
3秒前
3秒前
HE完成签到,获得积分10
3秒前
Jean发布了新的文献求助10
3秒前
文静发布了新的文献求助10
3秒前
4秒前
oligo发布了新的文献求助10
5秒前
王志杰发布了新的文献求助10
5秒前
6秒前
小栗发布了新的文献求助10
6秒前
强子今天读文献了嘛完成签到,获得积分10
7秒前
浮游应助烂漫的蜡烛采纳,获得10
7秒前
NexusExplorer应助aker3采纳,获得10
7秒前
王治焕发布了新的文献求助30
8秒前
8秒前
sevenhill应助LM采纳,获得10
8秒前
9秒前
fosca完成签到,获得积分10
9秒前
11秒前
yao完成签到,获得积分10
11秒前
安黎关注了科研通微信公众号
11秒前
CH完成签到,获得积分10
11秒前
12秒前
12秒前
aaaaaawwwww发布了新的文献求助10
12秒前
12秒前
woyufengtian完成签到,获得积分10
12秒前
13秒前
Janice发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
丘比特应助yuhan采纳,获得10
14秒前
小虫虫完成签到,获得积分10
14秒前
masterwill完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465838
求助须知:如何正确求助?哪些是违规求助? 4570083
关于积分的说明 14322455
捐赠科研通 4496549
什么是DOI,文献DOI怎么找? 2463392
邀请新用户注册赠送积分活动 1452295
关于科研通互助平台的介绍 1427497