Genotype Imputation Using K-Nearest Neighbors and Levenshtein Distance Metric

插补(统计学) Levenshtein距离 系统发育树 缺少数据 系统发育中的距离矩阵 遗传距离 数据挖掘 公制(单位) 人工智能 生物 编辑距离 计算机科学 模式识别(心理学) 遗传学 遗传变异 机器学习 生物信息学 基因 运营管理 经济
作者
Nishkal Hundia,Naveed Kabir,Sweksha Mehta,Abhay Pokhriyal,Zhuo En Chua,Arjun Rajaram,Michael Lutz,Amisha Kumar
标识
DOI:10.1109/ictc55196.2022.9952611
摘要

With several new genome sequencing methods such as Next Generation Sequencing (NGS) and nanopore technologies, there exists a wide range of techniques to explore different genetic variants and their impacts. However, these sequences can become degraded as some genotypes are not detected, leading to missing base pair values. Imputing these gaps in the data is essential to analyze the data properly. Some past studies have shown that certain machine learning models have, to some extent, been able to accurately impute the missing values in genotypes. This paper aims to outline an imputation approach created using the K-Nearest Neighbors algorithm and Levenshtein Distance parameters on the Mus genus. This approach involved imputing randomly masked nucleotide bases in any given gene sequence in Mus musculus by using data of the same genes from similar species in the Phylogenetic tree, namely Mus pahari and Mus caroli. Predictions for the missing spaces were generated by comparing a set number of bases before and after a given sequence of missing nucleotide bases in the target species, Mus musculus, to the same number of bases occurring before and after every possible prediction in the similar species using the Levenshtein distance metric. We found that using our proposed algorithm, we were able to predict over 500,000 individual missing bases in the gene sequences of Mus musculus with accuracies up to 87%. The model maintained an accuracy greater than 80% when all the blank spaces (sequences of consecutive blank spaces) were less than 200 characters long.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Sara_123发布了新的文献求助10
1秒前
哈哈哈哈完成签到 ,获得积分10
1秒前
eating完成签到,获得积分20
2秒前
asdfzxcv应助yyy采纳,获得10
2秒前
科研通AI6应助神勇虾头采纳,获得30
2秒前
大梦发布了新的文献求助10
2秒前
3秒前
英吉利25发布了新的文献求助10
3秒前
WE关闭了WE文献求助
3秒前
3秒前
yh发布了新的文献求助10
3秒前
可爱的函函应助小梦采纳,获得10
3秒前
pghy发布了新的文献求助10
3秒前
3386582258发布了新的文献求助10
3秒前
Hushluo发布了新的文献求助10
4秒前
Master_Ye发布了新的文献求助10
4秒前
lamitky发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
悠悠发布了新的文献求助10
6秒前
6秒前
爆米花应助皖医梁朝伟采纳,获得10
6秒前
6秒前
弎夜完成签到,获得积分10
6秒前
7秒前
7秒前
小禾发布了新的文献求助10
7秒前
俭朴衬衫完成签到 ,获得积分10
7秒前
Jared应助李xue采纳,获得10
8秒前
小吃货发布了新的文献求助10
8秒前
8秒前
脑洞疼应助Nomiy采纳,获得10
8秒前
SciGPT应助eating采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
小A同学发布了新的文献求助10
9秒前
9秒前
3386582258完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647599
求助须知:如何正确求助?哪些是违规求助? 4773824
关于积分的说明 15040250
捐赠科研通 4806401
什么是DOI,文献DOI怎么找? 2570250
邀请新用户注册赠送积分活动 1527084
关于科研通互助平台的介绍 1486162