Genotype Imputation Using K-Nearest Neighbors and Levenshtein Distance Metric

插补(统计学) Levenshtein距离 系统发育树 缺少数据 系统发育中的距离矩阵 遗传距离 数据挖掘 公制(单位) 人工智能 生物 编辑距离 计算机科学 模式识别(心理学) 遗传学 遗传变异 机器学习 生物信息学 基因 经济 运营管理
作者
Nishkal Hundia,Naveed Kabir,Sweksha Mehta,Abhay Pokhriyal,Zhuo En Chua,Arjun Rajaram,Michael Lutz,Amisha Kumar
标识
DOI:10.1109/ictc55196.2022.9952611
摘要

With several new genome sequencing methods such as Next Generation Sequencing (NGS) and nanopore technologies, there exists a wide range of techniques to explore different genetic variants and their impacts. However, these sequences can become degraded as some genotypes are not detected, leading to missing base pair values. Imputing these gaps in the data is essential to analyze the data properly. Some past studies have shown that certain machine learning models have, to some extent, been able to accurately impute the missing values in genotypes. This paper aims to outline an imputation approach created using the K-Nearest Neighbors algorithm and Levenshtein Distance parameters on the Mus genus. This approach involved imputing randomly masked nucleotide bases in any given gene sequence in Mus musculus by using data of the same genes from similar species in the Phylogenetic tree, namely Mus pahari and Mus caroli. Predictions for the missing spaces were generated by comparing a set number of bases before and after a given sequence of missing nucleotide bases in the target species, Mus musculus, to the same number of bases occurring before and after every possible prediction in the similar species using the Levenshtein distance metric. We found that using our proposed algorithm, we were able to predict over 500,000 individual missing bases in the gene sequences of Mus musculus with accuracies up to 87%. The model maintained an accuracy greater than 80% when all the blank spaces (sequences of consecutive blank spaces) were less than 200 characters long.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
nn发布了新的文献求助10
1秒前
liminghao完成签到,获得积分20
2秒前
Belinda发布了新的文献求助10
3秒前
cheire完成签到,获得积分10
3秒前
开心就好完成签到,获得积分20
3秒前
4秒前
妮妮发布了新的文献求助10
7秒前
之昂完成签到,获得积分10
7秒前
7秒前
周粥舟完成签到,获得积分10
8秒前
9秒前
ZYC完成签到,获得积分10
9秒前
葡萄糖完成签到,获得积分10
11秒前
烟花应助苗儿采纳,获得10
11秒前
11秒前
的y发布了新的文献求助10
13秒前
ZYC发布了新的文献求助10
13秒前
完美世界应助wpf7848采纳,获得10
13秒前
CipherSage应助开心就好采纳,获得10
13秒前
14秒前
辛勤小鸽子完成签到,获得积分10
14秒前
天天快乐应助安详的小凝采纳,获得10
15秒前
香蕉诗蕊应助zzz采纳,获得10
16秒前
霜霜发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
蓓蓓发布了新的文献求助10
19秒前
21秒前
雨兔儿完成签到,获得积分10
22秒前
22秒前
斯文败类应助赵星瑶采纳,获得10
23秒前
23秒前
12完成签到,获得积分10
23秒前
24秒前
斯文败类应助wangjing11采纳,获得10
25秒前
霜霜完成签到,获得积分10
25秒前
26秒前
26秒前
yiyi发布了新的文献求助30
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540561
求助须知:如何正确求助?哪些是违规求助? 4627197
关于积分的说明 14602739
捐赠科研通 4568254
什么是DOI,文献DOI怎么找? 2504430
邀请新用户注册赠送积分活动 1482011
关于科研通互助平台的介绍 1453645