Genotype Imputation Using K-Nearest Neighbors and Levenshtein Distance Metric

插补(统计学) Levenshtein距离 系统发育树 缺少数据 系统发育中的距离矩阵 遗传距离 数据挖掘 公制(单位) 人工智能 生物 编辑距离 计算机科学 模式识别(心理学) 遗传学 遗传变异 机器学习 生物信息学 基因 经济 运营管理
作者
Nishkal Hundia,Naveed Kabir,Sweksha Mehta,Abhay Pokhriyal,Zhuo En Chua,Arjun Rajaram,Michael Lutz,Amisha Kumar
标识
DOI:10.1109/ictc55196.2022.9952611
摘要

With several new genome sequencing methods such as Next Generation Sequencing (NGS) and nanopore technologies, there exists a wide range of techniques to explore different genetic variants and their impacts. However, these sequences can become degraded as some genotypes are not detected, leading to missing base pair values. Imputing these gaps in the data is essential to analyze the data properly. Some past studies have shown that certain machine learning models have, to some extent, been able to accurately impute the missing values in genotypes. This paper aims to outline an imputation approach created using the K-Nearest Neighbors algorithm and Levenshtein Distance parameters on the Mus genus. This approach involved imputing randomly masked nucleotide bases in any given gene sequence in Mus musculus by using data of the same genes from similar species in the Phylogenetic tree, namely Mus pahari and Mus caroli. Predictions for the missing spaces were generated by comparing a set number of bases before and after a given sequence of missing nucleotide bases in the target species, Mus musculus, to the same number of bases occurring before and after every possible prediction in the similar species using the Levenshtein distance metric. We found that using our proposed algorithm, we were able to predict over 500,000 individual missing bases in the gene sequences of Mus musculus with accuracies up to 87%. The model maintained an accuracy greater than 80% when all the blank spaces (sequences of consecutive blank spaces) were less than 200 characters long.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KYG发布了新的文献求助10
刚刚
秦可可发布了新的文献求助10
2秒前
科研通AI6应助NaCl采纳,获得10
2秒前
整齐高烽发布了新的文献求助10
3秒前
白色风车应助chem斌采纳,获得10
4秒前
4秒前
远山发布了新的文献求助10
5秒前
6秒前
KYG完成签到,获得积分20
7秒前
7秒前
一路向北发布了新的文献求助10
8秒前
8秒前
Stove完成签到,获得积分10
9秒前
iidae完成签到,获得积分10
9秒前
小余同学完成签到 ,获得积分10
10秒前
忧虑的代容完成签到,获得积分10
11秒前
田様应助青烟采纳,获得10
12秒前
汉堡包应助夹心采纳,获得10
13秒前
淡然惜雪发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助30
16秒前
ghhu完成签到,获得积分10
16秒前
18秒前
iNk应助科研通管家采纳,获得20
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得30
19秒前
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
19秒前
颜诺完成签到 ,获得积分10
20秒前
浅海111完成签到,获得积分10
21秒前
22秒前
24秒前
蜗牛0356完成签到 ,获得积分10
25秒前
lgq12697应助幸福的向彤采纳,获得10
26秒前
风清扬发布了新的文献求助10
27秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
李健应助高贵火儿采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601531
求助须知:如何正确求助?哪些是违规求助? 4011197
关于积分的说明 12418641
捐赠科研通 3691181
什么是DOI,文献DOI怎么找? 2034916
邀请新用户注册赠送积分活动 1068216
科研通“疑难数据库(出版商)”最低求助积分说明 952765