Improved inter-residue contact prediction via a hybrid generative model and dynamic loss function

蛋白质结构预测 计算机科学 卡斯普 残余物 交叉熵 生物系统 人工智能 算法 蛋白质结构 模式识别(心理学) 化学 生物化学 生物
作者
Mohammad Madani,Mohammad Mahdi Behzadi,Dongjin Song,Horea T. Ilieş,Anna Tarakanova
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:20: 6138-6148 被引量:7
标识
DOI:10.1016/j.csbj.2022.11.020
摘要

Protein contact maps represent spatial pairwise inter-residue interactions, providing a protein's translationally and rotationally invariant topological representation. Accurate contact map prediction has been a critical driving force for improving protein structure determination. Contact maps can also be used as a stand-alone tool for varied applications such as prediction of protein-protein interactions, structure-aware thermal stability or physicochemical properties. We develop a novel hybrid contact map prediction model, CGAN-Cmap, that uses a generative adversarial neural network embedded with a series of modified squeeze and excitation residual networks. To exploit features of different dimensions, we introduce two parallel modules. This architecture improves the prediction by increasing receptive fields, surpassing redundant features and encouraging more meaningful ones from 1D and 2D inputs. We also introduce a new custom dynamic binary cross-entropy loss function to address the input imbalance problem for highly sparse long-range contacts in proteins with insufficient homologs. We evaluate the model's performance on CASP 11, 12, 13, 14, and CAMEO test sets. CGAN-Cmap outperforms state-of-the-art models, improving precision of medium and long-range contacts by at least 3.5%. As a direct assessment between our model and AlphaFold2, the leading available protein structure prediction model, we compare extracted contact maps from AlphaFold2 and predicted contact maps from CGAN-Cmap. The results show that CGAN-Cmap has a mean precision higher by 1% compared to AlphaFold2 for most ranges of contacts. These results demonstrate an efficient approach for highly accurate contact map prediction toward accurate characterization of protein structure, properties and functions from sequence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助啊哟采纳,获得10
1秒前
holiday完成签到,获得积分10
1秒前
科研文献搬运工应助yyt采纳,获得30
2秒前
2秒前
yang完成签到,获得积分20
3秒前
阿宁完成签到,获得积分10
3秒前
hangongyishan完成签到,获得积分10
3秒前
可爱的函函应助2123121321321采纳,获得10
4秒前
悅已发布了新的文献求助10
5秒前
Jasper应助努力哥采纳,获得10
5秒前
哎嘿应助daisy采纳,获得10
5秒前
5秒前
科研通AI2S应助jiangx采纳,获得10
6秒前
7秒前
洛伊儿发布了新的文献求助10
7秒前
李健应助夷则七采纳,获得10
8秒前
10秒前
樱花草完成签到,获得积分20
11秒前
倪好发布了新的文献求助10
11秒前
漠漠完成签到 ,获得积分10
12秒前
光亮锦程完成签到,获得积分10
12秒前
12秒前
13秒前
鱼箩柚发布了新的文献求助10
15秒前
FreeRice发布了新的文献求助10
16秒前
叮了个当完成签到,获得积分10
16秒前
社恐科研狗完成签到,获得积分10
16秒前
kkkinoko完成签到 ,获得积分10
16秒前
十一克拉发布了新的文献求助10
16秒前
JamesPei应助努力哥采纳,获得10
17秒前
Yang_Yuting完成签到 ,获得积分10
17秒前
aka2012发布了新的文献求助10
17秒前
chentian发布了新的文献求助10
19秒前
隐形曼青应助norberta采纳,获得10
19秒前
咋还发布了新的文献求助10
20秒前
21秒前
21秒前
YUN完成签到,获得积分10
21秒前
24秒前
眼睛大的从雪完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148089
求助须知:如何正确求助?哪些是违规求助? 2799137
关于积分的说明 7833616
捐赠科研通 2456348
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628086
版权声明 601655