亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating daily reference evapotranspiration using a novel hybrid deep learning model

蒸散量 黄土高原 计算机科学 均方误差 人工智能 经验模型 深度学习 统计 环境科学 数学 模拟 土壤科学 生态学 生物
作者
Liwen Xing,Ningbo Cui,Li Guo,Taisheng Du,Daozhi Gong,Cun Zhan,Long Zhao,Zongjun Wu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:614: 128567-128567 被引量:11
标识
DOI:10.1016/j.jhydrol.2022.128567
摘要

Reference evapotranspiration (ET0) is usually employed for estimating actual crop ET together with crop coefficients (Kc). However, it is necessary to explore an alternative model to estimate ET0 concisely because of numerous limitations in the Penman–Monteith method. To improve the ET0 estimation accuracy using limited meteorological data, this study developed a novel hybrid deep learning model (d–LSTM) based on the meteorological data during 1961–2020 observed at fifty stations on the Loess Plateau, which used the Deep Belief Network (DBN) module to extract features from meteorological data and the Long Short–Term Memory (LSTM) module to expand time features and process data information with sequential features, respectively. Based on the comparative evaluation of ET0 estimation accuracy between the d–LSTM, DBN, LSTM, and nine empirical models, the results drawn from this study demonstrated that the d–LSTM model manifested the best performance as RH–based, Rn–based, and T–based ET0 estimating models. For local strategy, the value of R2, NSE, RMSE, MAPE, and GPI ranging 0.941 ± 0.020, 0.940 ± 0.032, 0.436 ± 0.457 mm d–1, 0.150 ± 0.016, and 1.611 ± 0.180 for D–LSTM1 (RH–based), 0.944 ± 0.030, 0.943 ± 0.037, 0.423 ± 0.313 mm d–1, 0.119 ± 0.013, and 1.917 ± 0.155 for D–LSTM2 (Rn–based), and 0.902 ± 0.091, 0.891 ± 0.094, 0.558 ± 0.319 mm d–1, 0.181 ± 0.058, and 1.440 ± 0.550 for D–LSTM3 (T–based). For external strategy, the average value of R2, NSE, RMSE, MAPE, and GPI were 0.874, 0.872, 0.651 mm d–1, 0.159, and 1.837 for D–LSTM1, 0.894, 0.892, 0.591 mm d–1, 0.138, and 2.000 for D–LSTM2, and 0.839, 0.827, 0.768 mm d–1, 0.212, and 1.482 for D–LSTM3. Following, the LSTM performed better than DBN for local strategy, but vice versa for external strategy. Despite DL models outperforming RH–based and Rn–based empirical models, HS outperformed the DBN3 for local strategy, and was superior to LSTM3 for external strategy. Under limited meteorological data, the Rn–based ET0 estimating models are superior to RH–based and T–based models, and RH–based achieved better accuracy than T–based for DL models, but vice versa for empirical models. There is significant spatial variability in the accuracy of daily ET0 models, but the high precision of the d–LSTM was stable on the Loess Plateau. Overall, the d–LSTM model, which combines the advantages of DBN and LSTM, is the most recommended ET0 model using incomplete meteorological data on the Loess Plateau, which is very helpful for farmers or irrigation system operators to improve their irrigation scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松诗霜完成签到 ,获得积分10
1秒前
乐乐应助百里幻竹采纳,获得10
5秒前
Xiaoping完成签到 ,获得积分10
16秒前
20秒前
25秒前
29秒前
结实天荷发布了新的文献求助10
34秒前
NOTHING完成签到 ,获得积分10
38秒前
Jasper应助有热心愿意采纳,获得10
38秒前
43秒前
赘婿应助语言的浅浅采纳,获得10
45秒前
Kishi完成签到,获得积分10
46秒前
百里幻竹发布了新的文献求助10
47秒前
Alanni完成签到 ,获得积分10
52秒前
在水一方应助酆冷安采纳,获得10
55秒前
ding应助lzlzq采纳,获得10
56秒前
1分钟前
zero完成签到,获得积分10
1分钟前
酆冷安发布了新的文献求助10
1分钟前
结实天荷完成签到,获得积分10
1分钟前
Lucas应助Sci采纳,获得10
1分钟前
充电宝应助Dr_Li采纳,获得10
1分钟前
1分钟前
hhhhhh发布了新的文献求助10
1分钟前
Sci发布了新的文献求助10
1分钟前
1分钟前
1分钟前
L_MD完成签到,获得积分10
1分钟前
hhhhhh完成签到,获得积分20
1分钟前
zxcsdfa发布了新的文献求助10
1分钟前
Dr_Li发布了新的文献求助10
1分钟前
扶光完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
SYLH应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463596
求助须知:如何正确求助?哪些是违规求助? 3057019
关于积分的说明 9054894
捐赠科研通 2746921
什么是DOI,文献DOI怎么找? 1507154
科研通“疑难数据库(出版商)”最低求助积分说明 696405
邀请新用户注册赠送积分活动 695916