材料科学
水溶液
电化学
电解质
阴极
化学工程
电池(电)
反应机理
纳米技术
化学
电极
物理化学
物理
工程类
催化作用
功率(物理)
量子力学
生物化学
作者
Varun R. Kankanallu,Zheng Xiao-yin,Cheng-Hung Lin,Nicole Zmich,Mingyuan Ge,Yu‐chen Karen Chen‐Wiegart
出处
期刊:Meeting abstracts
日期:2022-10-09
卷期号:MA2022-02 (4): 401-401
标识
DOI:10.1149/ma2022-024401mtgabs
摘要
Aqueous Zn-ion batteries has attracted great attention in recent years, as a promising candidate for grid energy storage applications. An aqueous system offers intrinsic safety, high ionic conductivity contributing improved power capability and raw materials that are more earth abundant and environment friendly. Numerous promising reports haven been focusing on the Zn/MnO 2 system owing to its low cost, moderate discharge potentials and with improved reversibility in the mild aqueous electrolyte. However, many questions remain unanswered regarding its reaction mechanism. The different reaction mechanisms including Zn +2 insertion, H + insertion, chemical conversion reaction including the combined intercalation and conversion reaction mechanism, and the dissolution-deposition of the manganese oxide. In this work, we aim to unravel the reaction mechanism by a systematic multimodal synchrotron characterization. This work discusses the galvano-static charge-discharge process of aqueous Zn-MnO 2 batteries using operando measurements, which provides us with a direct insight into the phenomenon and can be directly correlated to the battery's electrochemical response. The multimodal techniques include operando X-ray diffraction to study the structural phase change of the cathode active material, operando X-ray absorption spectroscopy to probe the local structure changes and transmission X-ray microscopy studies to observe the key morphological events. Overall, this multimodal approach gives us an insight into the reaction mechanism enabling us to better design Zn-MnO 2 batteries for practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI