A robust soft sensor based on artificial neural network for monitoring microbial lipid fermentation processes using Yarrowia lipolytica

雅罗维亚 发酵 人工神经网络 生物 化学 生物系统 食品科学 生物化学 酵母 人工智能 计算机科学
作者
Kaifeng Wang,Wenyang Zhao,Lu Lin,Tianjing Wang,Ping Wei,Rodrigo Ledesma‐Amaro,Aihui Zhang,Xiao‐Jun Ji
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:120 (4): 1015-1025 被引量:11
标识
DOI:10.1002/bit.28310
摘要

Abstract Microbial oils produced by Yarrowia lipolytica offer an environmentally friendly and sustainable alternative to petroleum as well as traditional lipids from animals and plants. The accurate measurement of fermentation parameters, including the substrate concentration, dry cell weight, and lipid accumulation, is the foundation of process control, which is indispensable for industrial lipid production. However, it remains a great challenge to measure the complex parameters online during the lipid fermentation process, which is nonlinear, multivariate, and characterized by strong coupling. As a type of AI technology, the artificial neural network model is a powerful tool for handling extremely complex problems, and it can be employed to develop a soft sensor to monitor the microbial lipid fermentation process of Y. lipolytica . In this study, we first analyzed and emphasized the volume of sodium hydroxide and dissolved oxygen concentration as central parameters of the fermentation process. Then, a soft sensor based on a four‐input artificial neural network model was developed, in which the input variables were fermentation time, dissolved oxygen concentration, initial glucose concentration, and additional volume of sodium hydroxide. This provides the possibility of online monitoring of dry cell weight, glucose concentration, and lipid production with high accuracy, which can be extended to similar fermentation processes characterized by the addition of bases or acids, as well as changes of the dissolved oxygen concentration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
seedcui完成签到,获得积分10
3秒前
4秒前
4秒前
xiangrikui应助沙脑采纳,获得10
4秒前
Link完成签到,获得积分10
5秒前
哈登完成签到,获得积分10
5秒前
6秒前
wang发布了新的文献求助10
6秒前
Jinyang完成签到 ,获得积分10
6秒前
misong发布了新的文献求助10
7秒前
7秒前
ye完成签到,获得积分20
7秒前
陆文灏发布了新的文献求助10
7秒前
7秒前
7秒前
蟹蟹发布了新的文献求助10
8秒前
久久完成签到,获得积分10
8秒前
8秒前
吹风机发布了新的文献求助10
9秒前
csy发布了新的文献求助10
9秒前
光光发电发布了新的文献求助10
10秒前
做一道光完成签到,获得积分10
10秒前
靳乐乐发布了新的文献求助10
11秒前
会笑的花发布了新的文献求助10
11秒前
wang完成签到,获得积分10
11秒前
xxl发布了新的文献求助10
11秒前
汉堡包应助傲娇黑夜采纳,获得10
12秒前
12秒前
思源应助NAUWV采纳,获得10
14秒前
矿渣完成签到,获得积分10
14秒前
su完成签到 ,获得积分10
15秒前
15秒前
lilili发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
一只小锅完成签到 ,获得积分10
21秒前
22秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463136
求助须知:如何正确求助?哪些是违规求助? 3056553
关于积分的说明 9052821
捐赠科研通 2746441
什么是DOI,文献DOI怎么找? 1506928
科研通“疑难数据库(出版商)”最低求助积分说明 696226
邀请新用户注册赠送积分活动 695808