A robust soft sensor based on artificial neural network for monitoring microbial lipid fermentation processes using Yarrowia lipolytica

雅罗维亚 发酵 人工神经网络 生物 化学 生物系统 食品科学 生物化学 酵母 人工智能 计算机科学
作者
Kaifeng Wang,Wenyang Zhao,Lu Lin,Tianjing Wang,Ping Wei,Rodrigo Ledesma‐Amaro,Aihui Zhang,Xiao‐Jun Ji
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:120 (4): 1015-1025 被引量:12
标识
DOI:10.1002/bit.28310
摘要

Abstract Microbial oils produced by Yarrowia lipolytica offer an environmentally friendly and sustainable alternative to petroleum as well as traditional lipids from animals and plants. The accurate measurement of fermentation parameters, including the substrate concentration, dry cell weight, and lipid accumulation, is the foundation of process control, which is indispensable for industrial lipid production. However, it remains a great challenge to measure the complex parameters online during the lipid fermentation process, which is nonlinear, multivariate, and characterized by strong coupling. As a type of AI technology, the artificial neural network model is a powerful tool for handling extremely complex problems, and it can be employed to develop a soft sensor to monitor the microbial lipid fermentation process of Y. lipolytica . In this study, we first analyzed and emphasized the volume of sodium hydroxide and dissolved oxygen concentration as central parameters of the fermentation process. Then, a soft sensor based on a four‐input artificial neural network model was developed, in which the input variables were fermentation time, dissolved oxygen concentration, initial glucose concentration, and additional volume of sodium hydroxide. This provides the possibility of online monitoring of dry cell weight, glucose concentration, and lipid production with high accuracy, which can be extended to similar fermentation processes characterized by the addition of bases or acids, as well as changes of the dissolved oxygen concentration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AI算法攻城狮完成签到 ,获得积分10
刚刚
CodeCraft应助wst采纳,获得10
刚刚
沉静的小熊猫完成签到,获得积分10
刚刚
zhangxr完成签到,获得积分10
刚刚
科研通AI5应助zjh采纳,获得10
1秒前
英俊的铭应助斯文墨镜采纳,获得10
1秒前
周新运完成签到,获得积分10
1秒前
小席完成签到,获得积分10
1秒前
1秒前
楼梯口无头女孩完成签到,获得积分10
1秒前
2秒前
顾矜应助热心市民小红花采纳,获得10
2秒前
李爱国应助武傲翔采纳,获得10
3秒前
4秒前
4秒前
4秒前
HonamC完成签到,获得积分10
6秒前
科目三应助幽梦挽歌采纳,获得10
6秒前
7秒前
7秒前
7秒前
科研通AI2S应助一杯双皮奶采纳,获得10
8秒前
短巷发布了新的文献求助10
9秒前
千思发布了新的文献求助10
9秒前
Yolanda发布了新的文献求助10
9秒前
小茗同学完成签到 ,获得积分10
9秒前
9秒前
搜集达人应助谨慎的向南采纳,获得10
10秒前
康康发布了新的文献求助10
10秒前
fagfagsf完成签到,获得积分10
10秒前
11秒前
喻箴完成签到,获得积分10
11秒前
11秒前
刘博宇发布了新的文献求助10
12秒前
9377发布了新的文献求助200
12秒前
12秒前
拼搏诗翠发布了新的文献求助10
13秒前
13秒前
lala发布了新的文献求助10
13秒前
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748456
求助须知:如何正确求助?哪些是违规求助? 3291468
关于积分的说明 10073184
捐赠科研通 3007264
什么是DOI,文献DOI怎么找? 1651526
邀请新用户注册赠送积分活动 786444
科研通“疑难数据库(出版商)”最低求助积分说明 751742