Assessment of an MR Elastography‐Based Nomogram as a Potential Imaging Biomarker for Predicting Microvascular Invasion of Hepatocellular Carcinoma

接收机工作特性 医学 列线图 肝细胞癌 弹性成像 曲线下面积 放射科 切断 逻辑回归 核医学 内科学 肿瘤科 超声波 量子力学 物理
作者
Shanshan Gao,Yunfei Zhang,Wei Sun,Kaipu Jin,Yongming Dai,Feihang Wang,Xianling Qian,Jing Han,Ruofan Sheng,Ruofan Sheng
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (2): 392-402 被引量:5
标识
DOI:10.1002/jmri.28553
摘要

Background Microvascular invasion (MVI) is a well‐established poor prognostic factor for hepatocellular carcinoma (HCC). Preoperative prediction of MVI is important for both therapeutic and prognostic purposes, but noninvasive methods are lacking. Purpose To develop an MR elastography (MRE)‐based nomogram for the preoperative prediction of MVI in HCC. Study Type Prospective. Subjects A total of 111 patients with surgically resected single HCC (52 MVI‐positive and 59 MVI‐negative), randomly allocated to training and validation cohorts (7:3 ratio). Field Strength/Sequence 2D‐MRE and conventional sequences (T1‐weighted in‐phase and opposed phase gradient echo, T2‐weighted fast spin echo, diffusion‐weighted single‐shot spin echo echo‐planar, and dynamic contrast‐enhanced T1‐weighted gradient echo) at 3.0 T. Assessment MRE‐stiffness and conventional qualitative and quantitative MRI features were evaluated and compared between MVI‐positive and MVI‐negative HCCs. Statistical Tests Univariable and multivariable logistic regression analyses were applied to identify potential predictors for MVI, and a nomogram was constructed according to the predictive model. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance. Harrell's C‐index evaluated the discrimination performance of the nomogram, calibration curves analyzed its diagnostic performance and decision curve analysis determined its clinical usefulness. A P value <0.05 was considered statistically significant. Results Tumor stiffness >6.284 kPa (odds ratio [OR] = 24.38) and the presence of arterial peritumoral enhancement (OR = 6.36) were independent variables associated with MVI. The areas under the ROC curves for tumor stiffness were 0.81 (95% confidence interval [CI]: 0.70, 0.89) and 0.77 (95% CI: 0.60, 0.90) in the training and validation cohorts, respectively. When both predictive variables were integrated, the best nomogram performance was achieved with C‐indices of 0.88 (95% CI: 0.78, 0.94) and 0.87 (95% CI: 0.71, 0.96) in the two cohorts, fitting well in calibration curves. The decision curve exhibited optimal net benefit with a wide range of threshold probabilities for the nomogram. Data Conclusion An MRE‐based nomogram may be a potential noninvasive imaging biomarker for predicting MVI of HCC preoperatively. Evidence Level 2. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
艾查恩发布了新的文献求助10
1秒前
蝶梦完成签到,获得积分10
1秒前
动听的梦容完成签到,获得积分10
1秒前
1秒前
ZHANG_Kun发布了新的文献求助10
1秒前
FOODIE发布了新的文献求助20
2秒前
不安夜雪发布了新的文献求助10
3秒前
3秒前
LJ发布了新的文献求助20
3秒前
嵇丹雪完成签到,获得积分10
3秒前
paltte发布了新的文献求助10
3秒前
Ava应助qqq采纳,获得10
4秒前
好名字完成签到 ,获得积分10
4秒前
认真的雪完成签到,获得积分10
4秒前
4秒前
luying完成签到,获得积分10
5秒前
5秒前
务实紫真发布了新的文献求助10
5秒前
5秒前
6秒前
咿呀完成签到,获得积分10
6秒前
duyu完成签到 ,获得积分10
6秒前
狸子完成签到,获得积分10
6秒前
Haomee完成签到,获得积分10
8秒前
Daisy发布了新的文献求助20
8秒前
8秒前
9秒前
9秒前
10秒前
无花果应助ZHANG_Kun采纳,获得10
10秒前
10秒前
打打应助三毛变相采纳,获得10
10秒前
10秒前
Nicole发布了新的文献求助10
10秒前
yyyyyyn发布了新的文献求助10
11秒前
huohuo完成签到,获得积分10
11秒前
小陈发布了新的文献求助10
11秒前
13秒前
lemon发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155325
求助须知:如何正确求助?哪些是违规求助? 2806223
关于积分的说明 7868751
捐赠科研通 2464681
什么是DOI,文献DOI怎么找? 1311903
科研通“疑难数据库(出版商)”最低求助积分说明 629783
版权声明 601880