MISSFormer: An Effective Transformer for 2D Medical Image Segmentation

计算机科学 编码器 人工智能 分割 图像分割 变压器 判别式 模式识别(心理学) 计算机视觉 稳健性(进化) 工程类 化学 电压 电气工程 操作系统 基因 生物化学
作者
Xiaohong Huang,Zhifang Deng,Dandan Li,Xueguang Yuan,Ying Fu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1484-1494 被引量:171
标识
DOI:10.1109/tmi.2022.3230943
摘要

Transformer-based methods are recently popular in vision tasks because of their capability to model global dependencies alone. However, it limits the performance of networks due to the lack of modeling local context and global-local correlations of multi-scale features. In this paper, we present MISSFormer, a Medical Image Segmentation tranSFormer. MISSFormer is a hierarchical encoder-decoder network with two appealing designs: 1) a feed-forward network in transformer block of U-shaped encoder-decoder structure is redesigned, ReMix-FFN, which explore global dependencies and local context for better feature discrimination by re-integrating the local context and global dependencies; 2) a ReMixed Transformer Context Bridge is proposed to extract the correlations of global dependencies and local context in multi-scale features generated by our hierarchical transformer encoder. The MISSFormer shows a solid capacity to capture more discriminative dependencies and context in medical image segmentation. The experiments on multi-organ, cardiac segmentation and retinal vessel segmentation tasks demonstrate the superiority, effectiveness and robustness of our MISSFormer. Specifically, the experimental results of MISSFormer trained from scratch even outperform state-of-the-art methods pre-trained on ImageNet, and the core designs can be generalized to other visual segmentation tasks. The code has been released on Github: https://github.com/ZhifangDeng/MISSFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Riki发布了新的文献求助10
1秒前
88发布了新的文献求助10
1秒前
2秒前
充电宝应助zfy采纳,获得10
3秒前
sak完成签到,获得积分10
4秒前
Shuo Yang发布了新的文献求助20
4秒前
呜呜呜呜发布了新的文献求助10
4秒前
在水一方应助hhzz采纳,获得10
4秒前
旧是完成签到 ,获得积分10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
杨小胖完成签到 ,获得积分10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
mm发布了新的文献求助10
6秒前
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
shouyu29应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
RC_Wang应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得30
7秒前
sutharsons应助科研通管家采纳,获得30
7秒前
归海含烟完成签到,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
shire应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
RC_Wang应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808