MISSFormer: An Effective Transformer for 2D Medical Image Segmentation

计算机科学 编码器 人工智能 分割 图像分割 变压器 判别式 模式识别(心理学) 计算机视觉 稳健性(进化) 工程类 化学 电压 电气工程 操作系统 基因 生物化学
作者
Xiaohong Huang,Zhifang Deng,Dandan Li,Xueguang Yuan,Ying Fu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1484-1494 被引量:232
标识
DOI:10.1109/tmi.2022.3230943
摘要

Transformer-based methods are recently popular in vision tasks because of their capability to model global dependencies alone. However, it limits the performance of networks due to the lack of modeling local context and global-local correlations of multi-scale features. In this paper, we present MISSFormer, a Medical Image Segmentation tranSFormer. MISSFormer is a hierarchical encoder-decoder network with two appealing designs: 1) a feed-forward network in transformer block of U-shaped encoder-decoder structure is redesigned, ReMix-FFN, which explore global dependencies and local context for better feature discrimination by re-integrating the local context and global dependencies; 2) a ReMixed Transformer Context Bridge is proposed to extract the correlations of global dependencies and local context in multi-scale features generated by our hierarchical transformer encoder. The MISSFormer shows a solid capacity to capture more discriminative dependencies and context in medical image segmentation. The experiments on multi-organ, cardiac segmentation and retinal vessel segmentation tasks demonstrate the superiority, effectiveness and robustness of our MISSFormer. Specifically, the experimental results of MISSFormer trained from scratch even outperform state-of-the-art methods pre-trained on ImageNet, and the core designs can be generalized to other visual segmentation tasks. The code has been released on Github: https://github.com/ZhifangDeng/MISSFormer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗白翠完成签到,获得积分10
1秒前
是鑫鑫发布了新的文献求助20
3秒前
心有猛虎发布了新的文献求助10
3秒前
4秒前
sa发布了新的文献求助10
4秒前
6秒前
十一完成签到,获得积分10
6秒前
11秒前
11秒前
12秒前
所所应助Zhukic采纳,获得10
12秒前
12秒前
科研通AI2S应助博修采纳,获得10
12秒前
drfwjuikesv完成签到,获得积分10
12秒前
14秒前
霸气南珍发布了新的文献求助10
14秒前
14秒前
NexusExplorer应助Yh采纳,获得10
15秒前
FAN发布了新的文献求助10
17秒前
CAOHOU应助幽默泥猴桃采纳,获得10
17秒前
18秒前
追风完成签到,获得积分10
19秒前
Alan发布了新的文献求助10
19秒前
21秒前
Ava应助勇敢牛牛采纳,获得10
21秒前
21秒前
FAN完成签到,获得积分10
23秒前
23秒前
葡萄嘎嘣发布了新的文献求助10
24秒前
天天下雨完成签到 ,获得积分10
25秒前
李健应助蜂蜜采纳,获得10
25秒前
深情安青应助Y0Y0采纳,获得10
26秒前
文艺谷蓝发布了新的文献求助10
29秒前
29秒前
30秒前
852应助科研力力采纳,获得10
30秒前
lh发布了新的文献求助10
32秒前
32秒前
33秒前
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962835
求助须知:如何正确求助?哪些是违规求助? 3508752
关于积分的说明 11142844
捐赠科研通 3241587
什么是DOI,文献DOI怎么找? 1791624
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803540