A Learning-Based Multipopulation Evolutionary Optimization for Flexible Job Shop Scheduling Problem With Finite Transportation Resources

计算机科学 作业车间调度 数学优化 进化算法 流水车间调度 调度(生产过程) 工作车间 人工智能 数学 地铁列车时刻表 操作系统
作者
Zixiao Pan,Ling Wang,Jie Zheng,Jing-fang Chen,Xing Wang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1590-1603 被引量:77
标识
DOI:10.1109/tevc.2022.3219238
摘要

In many practical manufacturing systems, transportation equipment such as automated guided vehicles (AGVs) is widely adopted to transfer jobs and realize the collaboration of different machines, but is often ignored in current researches. In this article, we address the flexible job shop scheduling problem with finite transportation resources (FJSP-Ts). Considering the difficulties caused by the introduction of transportation and the NP-hard nature, the evolutionary algorithm (EA) is adopted as a solution approach. To this end, a learning-based multipopulation evolutionary optimization (LMEO) is proposed to deal with the FJSP-T. First, the multipopulation strategy is introduced and a cooperation-based initialization is designed by combining several heuristics to guarantee the quality and diversity of the initial population. Second, a reinforcement learning (RL)-based mating selection is proposed to realize the cooperation of different subpopulations by selecting appropriate individuals for evolutionary search. Then, a specific local search inspired by the problem properties is designed to enhance the exploitation capability of the LMEO. Moreover, a statistical learning-based replacement is designed to maintain the quality and diversity of the population. Extensive experiments are conducted to test the performances of the LMEO. The statistical comparison shows that the LMEO is superior to the state-of-the-art algorithms in solving the FJSP-T in terms of solution quality and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
makimaki应助小沈采纳,获得10
刚刚
刚刚
baobao完成签到,获得积分10
1秒前
补丁发布了新的文献求助10
2秒前
2秒前
3秒前
专注的问寒应助洪文采纳,获得20
4秒前
5秒前
小王爱摆烂完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
mj完成签到,获得积分10
7秒前
7秒前
大模型应助友好的向日葵采纳,获得10
7秒前
雪蛤完成签到,获得积分10
7秒前
酥酥完成签到,获得积分10
8秒前
渡花应助Su采纳,获得10
8秒前
万能图书馆应助小怪采纳,获得10
8秒前
笨笨松完成签到,获得积分10
8秒前
大弟发布了新的文献求助10
8秒前
三七四五完成签到,获得积分10
9秒前
彩色黑米发布了新的文献求助10
9秒前
zhizhi发布了新的文献求助10
10秒前
传奇3应助帕尼尼采纳,获得10
10秒前
FashionBoy应助雪蛤采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
可爱的函函应助大弟采纳,获得10
12秒前
lee完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
YY本Y发布了新的文献求助30
14秒前
16秒前
韩世星发布了新的文献求助10
17秒前
深味i完成签到,获得积分10
17秒前
科研通AI2S应助Stanford采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632882
求助须知:如何正确求助?哪些是违规求助? 4728147
关于积分的说明 14984358
捐赠科研通 4790889
什么是DOI,文献DOI怎么找? 2558632
邀请新用户注册赠送积分活动 1519067
关于科研通互助平台的介绍 1479370