A Learning-Based Multipopulation Evolutionary Optimization for Flexible Job Shop Scheduling Problem With Finite Transportation Resources

计算机科学 作业车间调度 数学优化 进化算法 流水车间调度 调度(生产过程) 工作车间 人工智能 数学 地铁列车时刻表 操作系统
作者
Zixiao Pan,Ling Wang,Jie Zheng,Jing-fang Chen,Xing Wang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1590-1603 被引量:45
标识
DOI:10.1109/tevc.2022.3219238
摘要

In many practical manufacturing systems, transportation equipment such as automated guided vehicles (AGVs) is widely adopted to transfer jobs and realize the collaboration of different machines, but is often ignored in current researches. In this article, we address the flexible job shop scheduling problem with finite transportation resources (FJSP-Ts). Considering the difficulties caused by the introduction of transportation and the NP-hard nature, the evolutionary algorithm (EA) is adopted as a solution approach. To this end, a learning-based multipopulation evolutionary optimization (LMEO) is proposed to deal with the FJSP-T. First, the multipopulation strategy is introduced and a cooperation-based initialization is designed by combining several heuristics to guarantee the quality and diversity of the initial population. Second, a reinforcement learning (RL)-based mating selection is proposed to realize the cooperation of different subpopulations by selecting appropriate individuals for evolutionary search. Then, a specific local search inspired by the problem properties is designed to enhance the exploitation capability of the LMEO. Moreover, a statistical learning-based replacement is designed to maintain the quality and diversity of the population. Extensive experiments are conducted to test the performances of the LMEO. The statistical comparison shows that the LMEO is superior to the state-of-the-art algorithms in solving the FJSP-T in terms of solution quality and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen发布了新的文献求助10
刚刚
yyj完成签到,获得积分10
1秒前
眼睛大雨筠应助heavenhorse采纳,获得30
5秒前
6秒前
科目三应助洪焕良采纳,获得10
7秒前
小二郎应助伯赏人杰采纳,获得10
9秒前
dypdyp应助chen采纳,获得10
9秒前
ding应助闪闪飞柏采纳,获得10
11秒前
Lekai完成签到,获得积分10
12秒前
12秒前
故意的千秋完成签到 ,获得积分10
12秒前
rui完成签到,获得积分10
13秒前
朵拉A梦完成签到,获得积分10
14秒前
之组长了完成签到 ,获得积分10
15秒前
所所应助Lekai采纳,获得10
16秒前
Dang1987发布了新的文献求助10
16秒前
16秒前
思源应助wang采纳,获得10
16秒前
17秒前
17秒前
orixero应助俏皮的一德采纳,获得10
17秒前
轻舟应助Hjz采纳,获得10
18秒前
鉌誒赿耶完成签到,获得积分10
19秒前
念姬发布了新的文献求助10
20秒前
洪焕良发布了新的文献求助10
21秒前
云凡关注了科研通微信公众号
21秒前
我是老大应助坦率的枕头采纳,获得10
22秒前
22秒前
烟花应助伯赏人杰采纳,获得10
24秒前
24秒前
执着的冬瓜完成签到 ,获得积分10
25秒前
Dang1987完成签到,获得积分10
27秒前
ning发布了新的文献求助10
29秒前
30秒前
Akim应助Yen采纳,获得10
30秒前
YR完成签到,获得积分10
32秒前
34秒前
34秒前
云凡发布了新的文献求助10
34秒前
任燕杰发布了新的文献求助10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962932
求助须知:如何正确求助?哪些是违规求助? 3508908
关于积分的说明 11143865
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791700
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803579