A Learning-Based Multipopulation Evolutionary Optimization for Flexible Job Shop Scheduling Problem With Finite Transportation Resources

计算机科学 作业车间调度 数学优化 进化算法 流水车间调度 调度(生产过程) 工作车间 人工智能 数学 地铁列车时刻表 操作系统
作者
Zixiao Pan,Ling Wang,Jie Zheng,Jing-fang Chen,Xing Wang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (6): 1590-1603 被引量:25
标识
DOI:10.1109/tevc.2022.3219238
摘要

In many practical manufacturing systems, transportation equipment such as automated guided vehicles (AGVs) is widely adopted to transfer jobs and realize the collaboration of different machines, but is often ignored in current researches. In this article, we address the flexible job shop scheduling problem with finite transportation resources (FJSP-Ts). Considering the difficulties caused by the introduction of transportation and the NP-hard nature, the evolutionary algorithm (EA) is adopted as a solution approach. To this end, a learning-based multipopulation evolutionary optimization (LMEO) is proposed to deal with the FJSP-T. First, the multipopulation strategy is introduced and a cooperation-based initialization is designed by combining several heuristics to guarantee the quality and diversity of the initial population. Second, a reinforcement learning (RL)-based mating selection is proposed to realize the cooperation of different subpopulations by selecting appropriate individuals for evolutionary search. Then, a specific local search inspired by the problem properties is designed to enhance the exploitation capability of the LMEO. Moreover, a statistical learning-based replacement is designed to maintain the quality and diversity of the population. Extensive experiments are conducted to test the performances of the LMEO. The statistical comparison shows that the LMEO is superior to the state-of-the-art algorithms in solving the FJSP-T in terms of solution quality and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千宝完成签到 ,获得积分10
1秒前
Lllllllll完成签到,获得积分10
1秒前
打打应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
ccm应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
小米粥完成签到,获得积分10
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
Pinky_tea应助科研通管家采纳,获得50
3秒前
3秒前
3秒前
4秒前
5秒前
Xxi完成签到,获得积分10
5秒前
5秒前
6秒前
curryww发布了新的文献求助20
6秒前
6秒前
火火完成签到,获得积分10
6秒前
彭于晏应助姜姜姜采纳,获得10
8秒前
从容芮应助张张采纳,获得10
8秒前
LiuYinglong发布了新的文献求助10
9秒前
爆米花应助tgene采纳,获得10
10秒前
纯真盛男发布了新的文献求助30
10秒前
ardejiang发布了新的文献求助10
11秒前
从容芮应助懦弱的如蓉采纳,获得10
13秒前
14秒前
15秒前
Orange应助优秀电源采纳,获得10
15秒前
东方耀发布了新的文献求助10
17秒前
雅2018完成签到 ,获得积分0
18秒前
18秒前
小二郎应助LiuYinglong采纳,获得10
18秒前
19秒前
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154330
求助须知:如何正确求助?哪些是违规求助? 2805172
关于积分的说明 7863751
捐赠科研通 2463360
什么是DOI,文献DOI怎么找? 1311251
科研通“疑难数据库(出版商)”最低求助积分说明 629543
版权声明 601821