已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Benchmarking the Robustness of LiDAR Semantic Segmentation Models

稳健性(进化) 激光雷达 分割 计算机科学 概化理论 人工智能 水准点(测量) 尺度空间分割 图像分割 模式识别(心理学) 计算机视觉 机器学习 遥感 数学 地图学 地理 统计 基因 生物化学 化学
作者
Yan Xu,Chaoda Zheng,Zhen Li,Shuguang Cui,Dengxin Dai
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2301.00970
摘要

When using LiDAR semantic segmentation models for safety-critical applications such as autonomous driving, it is essential to understand and improve their robustness with respect to a large range of LiDAR corruptions. In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions. To rigorously evaluate the robustness and generalizability of current approaches, we propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy. Then, we systematically investigate 11 LiDAR semantic segmentation models, especially spanning different input representations (e.g., point clouds, voxels, projected images, and etc.), network architectures and training schemes. Through this study, we obtain two insights: 1) We find out that the input representation plays a crucial role in robustness. Specifically, under specific corruptions, different representations perform variously. 2) Although state-of-the-art methods on LiDAR semantic segmentation achieve promising results on clean data, they are less robust when dealing with noisy data. Finally, based on the above observations, we design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications. It is promising that our benchmark, comprehensive analysis, and observations can boost future research in robust LiDAR semantic segmentation for safety-critical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Sybsy采纳,获得10
2秒前
WW完成签到,获得积分20
2秒前
大个应助zz采纳,获得10
4秒前
123发布了新的文献求助10
10秒前
15秒前
alc完成签到,获得积分10
17秒前
葛力发布了新的文献求助10
18秒前
20秒前
可靠的怜珊完成签到 ,获得积分20
21秒前
22秒前
KIKI完成签到 ,获得积分10
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
今后应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
wang应助科研通管家采纳,获得10
27秒前
27秒前
123完成签到,获得积分20
27秒前
吃茶去完成签到 ,获得积分10
28秒前
28秒前
Sybsy发布了新的文献求助10
28秒前
兜里没糖了完成签到 ,获得积分0
30秒前
31秒前
丘比特应助肯瑞恩哭哭采纳,获得10
31秒前
熠熠生辉完成签到,获得积分10
33秒前
wanci应助水水水采纳,获得10
34秒前
35秒前
35秒前
葛力完成签到,获得积分10
37秒前
无非发布了新的文献求助10
38秒前
山野完成签到 ,获得积分10
39秒前
40秒前
皮s发布了新的文献求助10
41秒前
meredith0571完成签到,获得积分10
41秒前
聪明醉薇完成签到,获得积分10
43秒前
44秒前
44秒前
45秒前
斯文败类应助故意的股骨采纳,获得10
45秒前
王者归来完成签到,获得积分10
46秒前
liujing_242022完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581