Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode

区间(图论) 离群值 时间序列 人工神经网络 预测区间 计量经济学 概率预测 碳价格 计算机科学 数据挖掘 数学 人工智能 算法 机器学习 组合数学 气候变化 生物 概率逻辑 生态学
作者
Piao Wang,Zhifu Tao,Jinpei Liu,Huayou Chen
出处
期刊:Energy Economics [Elsevier]
卷期号:118: 106502-106502 被引量:19
标识
DOI:10.1016/j.eneco.2022.106502
摘要

Accurate carbon price forecasting can provide policymakers with a reasonable basis for carbon pricing. Interval-valued carbon price forecasting could provide sufficient information compared with real-valued carbon price time series prediction. On the other hand, current interval-valued carbon price forecasting has major challenges including data complexity, outliers, and the selection of forecasting methods, which make the forecasting results with great uncertainty and instability. To address these issues, this paper proposes an interval-valued carbon price forecasting method based on new data processing techniques, and discusses the effects of different combinations of interval variables on the forecasting results. We first established interval complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and interval outlier detection method (I-ksigma) to reduce the data complexity and identify outliers. Then, various neural network models include interval multilayer perceptron (IMLP), multi-output support vector regression (MSVR), long short-term memory network (LSTM), gated recurrent unit neural network (GRU), and convolution neural network (CNN) are chosen to conduct combination forecasting on the interval sub-modes produced by ICEEMDAN. The final results are obtained by summing the interval sub-modes. Finally, taking the carbon trading price in Hubei as the research object, the results show that the developed forecasting framework is superior to all comparison models in forecasting precision and stability. Furthermore, different combinations of interval variables (CRM, Minmax, L + 2R, and U-2R) lead to different decomposition results and outlier detection results, which finally affect the prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
橙子完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
不会写诗完成签到 ,获得积分10
4秒前
5秒前
txxxx发布了新的文献求助10
8秒前
daizao完成签到,获得积分0
8秒前
彩色语儿发布了新的文献求助100
8秒前
锤子废柴发布了新的文献求助10
8秒前
脑洞疼应助研友_V8Qmr8采纳,获得10
10秒前
12秒前
A宇完成签到,获得积分10
13秒前
14秒前
mengloo发布了新的文献求助10
16秒前
深情安青应助周凡淇采纳,获得10
17秒前
熊熊面包应助周凡淇采纳,获得10
17秒前
科目三应助周凡淇采纳,获得10
17秒前
大个应助周凡淇采纳,获得10
17秒前
英姑应助周凡淇采纳,获得10
17秒前
NexusExplorer应助周凡淇采纳,获得30
17秒前
星辰大海应助周凡淇采纳,获得10
17秒前
houchengru应助周凡淇采纳,获得10
17秒前
甜甜玫瑰应助周凡淇采纳,获得10
17秒前
香蕉觅云应助锤子废柴采纳,获得10
18秒前
阿童木完成签到,获得积分10
20秒前
20秒前
nengzou完成签到 ,获得积分10
20秒前
元世立发布了新的文献求助10
20秒前
txxxx完成签到,获得积分10
21秒前
21秒前
21秒前
彩色语儿完成签到,获得积分10
21秒前
23秒前
24秒前
24秒前
不吃香菜完成签到 ,获得积分10
24秒前
熹微发布了新的文献求助10
25秒前
Singularity发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125633
求助须知:如何正确求助?哪些是违规求助? 2775924
关于积分的说明 7728426
捐赠科研通 2431401
什么是DOI,文献DOI怎么找? 1291999
科研通“疑难数据库(出版商)”最低求助积分说明 622301
版权声明 600376