锐钛矿
氧化还原
材料科学
无定形固体
化学工程
纳米颗粒
锂(药物)
钠
插层(化学)
离子
扩散
钛
无机化学
纳米技术
化学
催化作用
光催化
内分泌学
工程类
物理
热力学
有机化学
冶金
医学
生物化学
作者
Qiulong Wei,Xiaoqing Chang,Danielle M. Butts,Ryan H. DeBlock,Kun Lan,Junbin Li,Dongliang Chao,Dong‐Liang Peng,Bruce Dunn
标识
DOI:10.1038/s41467-022-35617-3
摘要
Sodium-ion storage technologies are promising candidates for large-scale grid systems due to the abundance and low cost of sodium. However, compared to well-understood lithium-ion storage mechanisms, sodium-ion storage remains relatively unexplored. Herein, we systematically determine the sodium-ion storage properties of anatase titanium dioxide (TiO2(A)). During the initial sodiation process, a thin surface layer (~3 to 5 nm) of crystalline TiO2(A) becomes amorphous but still undergoes Ti4+/Ti3+ redox reactions. A model explaining the role of the amorphous layer and the dependence of the specific capacity on the size of TiO2(A) nanoparticles is proposed. Amorphous nanoparticles of ~10 nm seem to be optimum in terms of achieving high specific capacity, on the order of 200 mAh g-1, at high charge/discharge rates. Kinetic studies of TiO2(A) nanoparticles indicate that sodium-ion storage is due to a surface-redox mechanism that is not dependent on nanoparticle size in contrast to the lithiation of TiO2(A) which is a diffusion-limited intercalation process. The surface-redox properties of TiO2(A) result in excellent rate capability, cycling stability and low overpotentials. Moreover, tailoring the surface-redox mechanism enables thick electrodes of TiO2(A) to retain high rate properties, and represents a promising direction for high-power sodium-ion storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI