Named entity recognition of Chinese electronic medical records based on a hybrid neural network and medical MC-BERT

计算机科学 人工智能 文字嵌入 特征(语言学) 自然语言处理 命名实体识别 人工神经网络 背景(考古学) 特征工程 特征向量 词(群论) 混合神经网络 词汇 深度学习 情报检索 任务(项目管理) 嵌入 经济 管理 古生物学 哲学 生物 语言学
作者
Peng Chen,Meng Zhang,Xiaosheng Yu,Songpu Li
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:22 (1) 被引量:4
标识
DOI:10.1186/s12911-022-02059-2
摘要

Abstract Background Named entity recognition (NER) of electronic medical records is an important task in clinical medical research. Although deep learning combined with pretraining models performs well in recognizing entities in clinical texts, because Chinese electronic medical records have a special text structure and vocabulary distribution, general pretraining models cannot effectively incorporate entities and medical domain knowledge into representation learning; separate deep network models lack the ability to fully extract rich features in complex texts, which negatively affects the named entity recognition of electronic medical records. Methods To better represent electronic medical record text, we extract the text’s local features and multilevel sequence interaction information to improve the effectiveness of electronic medical record named entity recognition. This paper proposes a hybrid neural network model based on medical MC-BERT, namely, the MC-BERT + BiLSTM + CNN + MHA + CRF model. First, MC-BERT is used as the word embedding model of the text to obtain the word vector, and then BiLSTM and CNN obtain the feature information of the forward and backward directions of the word vector and the local context to obtain the corresponding feature vector. After merging the two feature vectors, they are sent to multihead self-attention (MHA) to obtain multilevel semantic features, and finally, CRF is used to decode the features and predict the label sequence. Results The experiments show that the F1 values of our proposed hybrid neural network model based on MC-BERT reach 94.22%, 86.47%, and 92.28% on the CCKS-2017, CCKS-2019 and cEHRNER datasets, respectively. Compared with the general-domain BERT-based BiLSTM + CRF, our F1 values increased by 0.89%, 1.65% and 2.63%. Finally, we analyzed the effect of an unbalanced number of entities in the electronic medical records on the results of the NER experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝桉发布了新的文献求助10
刚刚
NexusExplorer应助愉快的鞯采纳,获得30
刚刚
dfghjkl完成签到 ,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
Jack发布了新的文献求助10
1秒前
1秒前
2秒前
wei完成签到,获得积分10
2秒前
Jasper应助冷傲海蓝采纳,获得10
2秒前
3秒前
水博士发布了新的文献求助10
4秒前
。。。完成签到,获得积分10
5秒前
冷静凌文完成签到,获得积分10
5秒前
聪明煎饼发布了新的文献求助10
6秒前
6秒前
木钉子发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
球球你了我真的很需要这篇文章完成签到,获得积分10
8秒前
倾千奚山发布了新的文献求助10
8秒前
1147468624完成签到,获得积分20
8秒前
猫罐头完成签到,获得积分10
8秒前
8秒前
连牙蓝上了吗完成签到 ,获得积分10
8秒前
SSSSscoliosis完成签到,获得积分10
10秒前
hyacinth发布了新的文献求助10
11秒前
11秒前
12秒前
Jack完成签到,获得积分10
12秒前
wuhao0118发布了新的文献求助10
13秒前
Louie~驳回了SciGPT应助
13秒前
power完成签到,获得积分10
13秒前
大力信封完成签到 ,获得积分10
13秒前
orixero应助CC采纳,获得10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557968
求助须知:如何正确求助?哪些是违规求助? 3133041
关于积分的说明 9400300
捐赠科研通 2833169
什么是DOI,文献DOI怎么找? 1557287
邀请新用户注册赠送积分活动 727176
科研通“疑难数据库(出版商)”最低求助积分说明 716201