Self-Supervised Multi-Source Heterogeneous Data Fusion Using Encode and Decode Attention for Intelligent Medical Device Communication Analysis

计算机科学 传感器融合 领域(数学) 编码 可用性 监督学习 数据集成 人工智能 数据挖掘 机器学习 人机交互 人工神经网络 生物化学 化学 数学 纯数学 基因
作者
Weidong Gao,Zhenwei Zhao
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tce.2023.3321331
摘要

With the development of artificial intelligence, the application of intelligent medical devices is gradually becoming popular. Intelligent medical devices can access many types of medical data through sensors and analyze these data to monitor, diagnose and treat patients. Intelligent medical device communication is an important research area that is of great significance to the development of the medical field. Intelligent medical device communication technology allows medical devices to communicate and share information with each other, thereby improving the efficiency and accuracy of medical devices. However, due to the heterogeneous nature of medical data and the diversity of data sources, it has become a challenge to integrate and analyze these data effectively. In order to achieve data interaction and sharing between different devices, it is necessary to fuse heterogeneous data from multiple sources to improve data integrity and usability. In this paper, we propose a self-supervised multi-source heterogeneous data fusion method using encode and decode attention for intelligent medical device communication analysis. The method improves data fusion by automatically learning the correlation between data through self-supervised learning and using encoding and decoding attention to strengthen the correlation between data. The experimental results show that the proposed method can effectively improve the accuracy and efficiency of medical data fusion and provide a strong support for communication between intelligent medical devices. This research integrates different types of medical information to provide better decision support for physicians and to promote medical technology advancement and health management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BIUBIU发布了新的文献求助20
刚刚
善学以致用应助大胆浩然采纳,获得10
1秒前
小严发布了新的文献求助10
1秒前
塔塔饼完成签到,获得积分10
3秒前
Lin完成签到,获得积分10
3秒前
4秒前
真不记得用户名完成签到 ,获得积分10
4秒前
卓立0418发布了新的文献求助10
5秒前
同福发布了新的文献求助10
5秒前
李爱国应助qqa采纳,获得10
7秒前
7秒前
看你个完成签到,获得积分10
8秒前
余海川完成签到,获得积分10
8秒前
小二郎应助源源不断采纳,获得10
9秒前
10秒前
橘络发布了新的文献求助10
11秒前
12秒前
hui完成签到,获得积分10
12秒前
小严完成签到,获得积分10
14秒前
15秒前
15秒前
NexusExplorer应助BIUBIU采纳,获得10
17秒前
酷波er应助tansl1989采纳,获得10
18秒前
18秒前
18秒前
桐桐应助大炮台采纳,获得10
19秒前
qqa发布了新的文献求助10
20秒前
21秒前
共享精神应助xumengsuo采纳,获得10
21秒前
21秒前
hui发布了新的文献求助10
22秒前
夏青荷发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
wu发布了新的文献求助10
26秒前
26秒前
26秒前
Lucas应助地狱跳跳虎采纳,获得10
26秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459066
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037605
捐赠科研通 2742924
什么是DOI,文献DOI怎么找? 1504562
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589