A method for transforming aliased modes to true modes based on density clustering and Riemann sheets selection in acoustic logging dispersion inversion

慢度 算法 反演(地质) 黎曼假设 地质学 计算机科学 数学分析 数学 声学 物理 地震学 构造学
作者
Chao Zhang,Da Chen,Hengshan Hu,Jun Wang,Xiaodong He
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): D15-D29 被引量:1
标识
DOI:10.1190/geo2022-0706.1
摘要

Dispersion curves obtained from well logs provide crucial formation information around the borehole. An essential step in the inversion of such curves is to eliminate aliased modes, which can potentially interfere with true modes at higher frequencies. The traditional approach involves manually matching the inversion slowness values with the corresponding wave modes at each frequency, which is time consuming and labor intensive. In addition, the traditional method is applicable for the elimination of the aliased modes that are far from true modes, but it is ineffective in resolving aliased modes that approach or even intersect with the true modes. To address these limitations, a novel method is developed to transform aliased modes into true modes. The proposed method involves two key steps. First, the slownesses of individual modes are automatically picked by the density clustering algorithm. Second, based on the Riemann sheets selection of slowness, aliased modes are transformed into true modes by using the single valuedness of the wave-mode spectra and the correspondence between the amplitude spectrum and the slowness. In addition, a theoretical background is provided by introducing the concept of Riemann sheets to explain the origin of aliased modes in the computation. The proposed method can obtain comprehensive and precise dispersion curves, even in cases for which the true modes are interfered with or crossed by aliased modes. The accuracy of the method is validated by comparing the inversion results with the forward model’s dispersion curves. Furthermore, the robustness of the approach is determined by applying it to synthetic waveforms with noise and field waveforms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠萝吹雪完成签到,获得积分10
刚刚
lisa完成签到,获得积分10
1秒前
Emilia完成签到,获得积分10
2秒前
3秒前
4秒前
孤竹雅弦完成签到,获得积分10
4秒前
5秒前
CC完成签到,获得积分20
5秒前
艾米完成签到,获得积分20
6秒前
开朗的菲鹰完成签到,获得积分10
6秒前
中和皇极应助Valky采纳,获得10
7秒前
tommyliu完成签到,获得积分10
10秒前
xmsswph发布了新的文献求助10
10秒前
10秒前
山鲁佐德爱文献完成签到 ,获得积分10
11秒前
大胆无春发布了新的文献求助10
12秒前
孤独惜海完成签到,获得积分20
12秒前
猪蹄完成签到,获得积分10
13秒前
科目三应助九九九采纳,获得10
13秒前
猪蹄发布了新的文献求助10
17秒前
18秒前
简单的期待完成签到,获得积分10
20秒前
赘婿应助xmsswph采纳,获得10
20秒前
北辰完成签到,获得积分10
23秒前
刘小小完成签到,获得积分20
25秒前
斯文败类应助追寻鸵鸟采纳,获得10
27秒前
27秒前
Lizhiiiy完成签到,获得积分10
28秒前
StarChen发布了新的文献求助30
28秒前
29秒前
30秒前
30秒前
成功发论文完成签到,获得积分10
32秒前
34秒前
34秒前
树欲静而风不止完成签到,获得积分10
35秒前
季秋发布了新的文献求助10
35秒前
研友_ZGR0jn完成签到,获得积分10
37秒前
美伢发布了新的文献求助10
37秒前
无言关注了科研通微信公众号
38秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700