Osteosarocma progression in biomimetic matrix with different stiffness: Insights from a three-dimensional printed gelatin methacrylamide hydrogel

骨肉瘤 基质(化学分析) 整合素 刚度 细胞外基质 细胞生物学 生物医学工程 化学 材料科学 癌症研究 细胞 医学 生物 生物化学 复合材料
作者
Yixuan Lin,Kai Yuan,Yiqi Yang,Shengbing Yang,Kai Huang,Zhifeng Yu,Shuhong Zhang,Yihao Liu,Hanjun Li,Yang Dong,Tingting Tang
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:252: 126391-126391 被引量:3
标识
DOI:10.1016/j.ijbiomac.2023.126391
摘要

Recent studies on osteosarcoma and matrix stiffness are still mostly performed in a 2D setting, which is distinct from in vivo conditions. Therefore, the results from the 2D models may not reflect the real effect of matrix stiffness on cell phenotype. Here, we employed a 3D bioprinted osteosarcoma model, to study the effect of matrix stiffness on osteosarcoma cells. Through density adjustment of GelMA, we constructed three osteosarcoma models with distinct matrix stiffnesses of 50, 80, and 130 kPa. In this study, we found that osteosarcoma cells proliferated faster, migrated more actively, had a more stretched morphology, and a lower drug sensitivity in a softer 3D matrix. When placed in a stiffer matrix, osteosarcoma cells secrete more MMP and VEGF, potentially to fight for survival and attract vascular invasion. Transcriptomic analysis showed that matrix stiffness could impact the signaling pathway of integrin α5-MAPK. The transplantation of 3D printed models in nude mice showed that cells encapsulated in the softer hydrogel were more likely to form subcutaneous tumors. These results suggest that matrix stiffness plays an important role in the development of osteosarcoma in a 3D environment and that inhibition of integrin α5 could block the signal transduction of matrix stiffness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Jasper应助刘芸芸采纳,获得10
3秒前
m彬m彬完成签到 ,获得积分10
3秒前
4秒前
自信鑫鹏完成签到,获得积分10
4秒前
HYH完成签到,获得积分10
4秒前
Harish完成签到,获得积分10
5秒前
研友_851KE8发布了新的文献求助10
5秒前
5秒前
一段乐多发布了新的文献求助10
5秒前
5秒前
华仔完成签到,获得积分10
5秒前
刘百慧完成签到,获得积分10
5秒前
5秒前
Wyan发布了新的文献求助80
7秒前
成就映秋发布了新的文献求助30
7秒前
科研通AI2S应助坤坤采纳,获得10
7秒前
整齐芷文完成签到,获得积分10
8秒前
科研通AI5应助小马哥36采纳,获得10
8秒前
灵巧荆发布了新的文献求助10
9秒前
小二郎应助侦察兵采纳,获得10
9秒前
爆米花完成签到 ,获得积分10
9秒前
今后应助Evan123采纳,获得10
9秒前
凤凰之玉完成签到 ,获得积分10
10秒前
shi hui应助冬瓜炖排骨采纳,获得10
10秒前
11秒前
dyh6802发布了新的文献求助10
11秒前
冷静雅青发布了新的文献求助10
11秒前
CipherSage应助猪猪hero采纳,获得10
12秒前
领导范儿应助不凡采纳,获得30
12秒前
顾矜应助坚定的亦绿采纳,获得10
13秒前
13秒前
yu完成签到,获得积分10
13秒前
Chris完成签到,获得积分10
14秒前
cookie发布了新的文献求助10
15秒前
胖仔完成签到,获得积分10
15秒前
Chan0501完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794