共同进化
生物信息学
蛋白质工程
计算生物学
蛋白质结构域
领域(数学分析)
合成生物学
亲缘关系
计算机科学
人工智能
生物
机器学习
进化生物学
遗传学
基因
数学分析
生物化学
数学
酶
作者
Aerin Yang,Kevin M. Jude,Ben Lai,Mason Minot,Anna Kocyła,Caleb R. Glassman,Daisuke Nishimiya,Yoon Seok Kim,Sai T. Reddy,Aly A. Khan,K. Christopher García
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2023-07-27
卷期号:381 (6656)
被引量:13
标识
DOI:10.1126/science.adh1720
摘要
Fine-tuning of protein-protein interactions occurs naturally through coevolution, but this process is difficult to recapitulate in the laboratory. We describe a platform for synthetic protein-protein coevolution that can isolate matched pairs of interacting muteins from complex libraries. This large dataset of coevolved complexes drove a systems-level analysis of molecular recognition between Z domain–affibody pairs spanning a wide range of structures, affinities, cross-reactivities, and orthogonalities, and captured a broad spectrum of coevolutionary networks. Furthermore, we harnessed pretrained protein language models to expand, in silico, the amino acid diversity of our coevolution screen, predicting remodeled interfaces beyond the reach of the experimental library. The integration of these approaches provides a means of simulating protein coevolution and generating protein complexes with diverse molecular recognition properties for biotechnology and synthetic biology.
科研通智能强力驱动
Strongly Powered by AbleSci AI