Gaussian Synthesis for High-Precision Location in Oriented Object Detection

最小边界框 计算机科学 算法 跳跃式监视 探测器 高斯分布 解码方法 目标检测 计算机视觉 人工智能 模式识别(心理学) 图像(数学) 物理 量子力学 电信
作者
Zhonghua Li,Biao Hou,Zitong Wu,Bo Ren,Zhongle Ren,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:11
标识
DOI:10.1109/tgrs.2023.3310619
摘要

In aerial image scenes, the objects have properties of arbitrary orientation, large-scale range, and dense distribution. Thus, the object detector uses oriented bounding box (OBB) to locate objects, which is more complex and challenging than horizontal bounding box (HBB) detector. Mainstream OBB detectors mostly use one-to-many label assignment strategy to predict multiple bounding boxes for the same object, and filter out repeat predictions by non-maximum suppression (NMS). NMS ranks with confidence and drops the detection box with IoU higher than the threshold, which is easy to get the local optimum result. The clustered synthesis method gets more accurate results than the original NMS, but applying it to the OBB detector leads to border shift, which arises from the angular discontinuity problem. Therefore, we use Gaussian OBB (G-OBB) to deal with the angular discontinuity and thus eliminate the offset generated by direct synthesis. G-OBB is not an easy to understand and describe representation. For this reason, we analyze the properties of G-OBB, and design a decoding method to convert a G-OBB to a rotated rectangular box, further discussing its conditions. Based on the decoding method, we propose a Gaussian synthesis algorithm (GauS), which transforms the OBB into Gaussian space, followed by synthesis, and finally transforms the synthesis result back into a new OBB. We have derived the synthesis and decoding methods, and further verified their effectiveness. The extensive experiments on several existing models show that GauS takes very little computation and improves detector's high-precision performance. Extensive experiments verify the effectiveness, stability, and universality of the proposed algorithm. In addition, The RTMDet using GauS achieves a performance of 81.61 AP 50 and gains a 0.39% improvement in mAP, which achieves the SOTA performance. Our implementation is available at: https://github.com/lzh420202/GauS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sheeptime发布了新的文献求助10
刚刚
ding应助gyro采纳,获得10
1秒前
Mine_cherry应助smh采纳,获得30
1秒前
1秒前
小杨完成签到,获得积分10
1秒前
2秒前
123发布了新的文献求助10
2秒前
3秒前
beforethedawn完成签到,获得积分10
3秒前
田田田田完成签到,获得积分10
3秒前
4秒前
蓝天应助Brass采纳,获得10
5秒前
大龙哥886应助飞快的映菱采纳,获得10
5秒前
隐形曼青应助飞快的映菱采纳,获得10
5秒前
hansongluo发布了新的文献求助10
5秒前
5秒前
汉堡包应助STP顶峰相见采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Hello应助王图图采纳,获得10
6秒前
6秒前
zuihaodewomen发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
谢小盟发布了新的文献求助200
7秒前
天天快乐应助水文新绿微采纳,获得10
7秒前
子期完成签到 ,获得积分10
8秒前
张先森完成签到,获得积分10
8秒前
zhaolg完成签到,获得积分20
8秒前
ee发布了新的文献求助10
9秒前
9秒前
www发布了新的文献求助10
9秒前
个性语堂发布了新的文献求助10
9秒前
10秒前
10秒前
4114完成签到,获得积分10
11秒前
搜集达人应助深情雨泽采纳,获得10
11秒前
可爱的函函应助大胆芯采纳,获得10
14秒前
直率小霜发布了新的文献求助30
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712429
求助须知:如何正确求助?哪些是违规求助? 5209804
关于积分的说明 15267369
捐赠科研通 4864354
什么是DOI,文献DOI怎么找? 2611366
邀请新用户注册赠送积分活动 1561656
关于科研通互助平台的介绍 1518919