Gaussian Synthesis for High-Precision Location in Oriented Object Detection

最小边界框 计算机科学 算法 跳跃式监视 探测器 高斯分布 解码方法 目标检测 计算机视觉 人工智能 模式识别(心理学) 图像(数学) 物理 电信 量子力学
作者
Zhonghua Li,Biao Hou,Zitong Wu,Bo Ren,Zhongle Ren,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:7
标识
DOI:10.1109/tgrs.2023.3310619
摘要

In aerial image scenes, the objects have properties of arbitrary orientation, large-scale range, and dense distribution. Thus, the object detector uses oriented bounding box (OBB) to locate objects, which is more complex and challenging than horizontal bounding box (HBB) detector. Mainstream OBB detectors mostly use one-to-many label assignment strategy to predict multiple bounding boxes for the same object, and filter out repeat predictions by non-maximum suppression (NMS). NMS ranks with confidence and drops the detection box with IoU higher than the threshold, which is easy to get the local optimum result. The clustered synthesis method gets more accurate results than the original NMS, but applying it to the OBB detector leads to border shift, which arises from the angular discontinuity problem. Therefore, we use Gaussian OBB (G-OBB) to deal with the angular discontinuity and thus eliminate the offset generated by direct synthesis. G-OBB is not an easy to understand and describe representation. For this reason, we analyze the properties of G-OBB, and design a decoding method to convert a G-OBB to a rotated rectangular box, further discussing its conditions. Based on the decoding method, we propose a Gaussian synthesis algorithm (GauS), which transforms the OBB into Gaussian space, followed by synthesis, and finally transforms the synthesis result back into a new OBB. We have derived the synthesis and decoding methods, and further verified their effectiveness. The extensive experiments on several existing models show that GauS takes very little computation and improves detector's high-precision performance. Extensive experiments verify the effectiveness, stability, and universality of the proposed algorithm. In addition, The RTMDet using GauS achieves a performance of 81.61 AP 50 and gains a 0.39% improvement in mAP, which achieves the SOTA performance. Our implementation is available at: https://github.com/lzh420202/GauS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助蔺瑾瑜采纳,获得10
2秒前
情怀应助嘎嘎嘎嘎采纳,获得50
3秒前
SDUMoist完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
充电宝应助sun采纳,获得10
5秒前
6秒前
小值钱完成签到,获得积分10
6秒前
不拿拿完成签到 ,获得积分20
7秒前
gxyyyy完成签到,获得积分10
8秒前
8秒前
9秒前
chen发布了新的文献求助10
10秒前
10秒前
科烟生完成签到,获得积分10
10秒前
海潮发布了新的文献求助30
11秒前
pe发布了新的文献求助10
13秒前
蔺瑾瑜发布了新的文献求助10
13秒前
wanci应助Yiyi采纳,获得10
14秒前
星辰大海应助hxl采纳,获得10
14秒前
搞学术的成功女人完成签到,获得积分10
14秒前
普外科老白完成签到,获得积分10
15秒前
胖蛋蛋蛋完成签到,获得积分10
16秒前
wanci应助贺可乐采纳,获得30
18秒前
18秒前
一一完成签到,获得积分10
19秒前
lei关闭了lei文献求助
21秒前
LEO完成签到,获得积分10
22秒前
22秒前
22秒前
伯赏浩天给伯赏浩天的求助进行了留言
22秒前
呵呜哎辉发布了新的文献求助10
23秒前
23秒前
23秒前
qweerrtt发布了新的文献求助10
25秒前
111完成签到 ,获得积分10
26秒前
26秒前
列奥维登发布了新的文献求助10
27秒前
笨笨芯发布了新的文献求助10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835