Gaussian Synthesis for High-Precision Location in Oriented Object Detection

最小边界框 计算机科学 算法 跳跃式监视 探测器 高斯分布 解码方法 目标检测 计算机视觉 人工智能 模式识别(心理学) 图像(数学) 物理 量子力学 电信
作者
Zhonghua Li,Biao Hou,Zitong Wu,Bo Ren,Zhongle Ren,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:7
标识
DOI:10.1109/tgrs.2023.3310619
摘要

In aerial image scenes, the objects have properties of arbitrary orientation, large-scale range, and dense distribution. Thus, the object detector uses oriented bounding box (OBB) to locate objects, which is more complex and challenging than horizontal bounding box (HBB) detector. Mainstream OBB detectors mostly use one-to-many label assignment strategy to predict multiple bounding boxes for the same object, and filter out repeat predictions by non-maximum suppression (NMS). NMS ranks with confidence and drops the detection box with IoU higher than the threshold, which is easy to get the local optimum result. The clustered synthesis method gets more accurate results than the original NMS, but applying it to the OBB detector leads to border shift, which arises from the angular discontinuity problem. Therefore, we use Gaussian OBB (G-OBB) to deal with the angular discontinuity and thus eliminate the offset generated by direct synthesis. G-OBB is not an easy to understand and describe representation. For this reason, we analyze the properties of G-OBB, and design a decoding method to convert a G-OBB to a rotated rectangular box, further discussing its conditions. Based on the decoding method, we propose a Gaussian synthesis algorithm (GauS), which transforms the OBB into Gaussian space, followed by synthesis, and finally transforms the synthesis result back into a new OBB. We have derived the synthesis and decoding methods, and further verified their effectiveness. The extensive experiments on several existing models show that GauS takes very little computation and improves detector's high-precision performance. Extensive experiments verify the effectiveness, stability, and universality of the proposed algorithm. In addition, The RTMDet using GauS achieves a performance of 81.61 AP 50 and gains a 0.39% improvement in mAP, which achieves the SOTA performance. Our implementation is available at: https://github.com/lzh420202/GauS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木马不旋转完成签到,获得积分10
刚刚
受伤冰菱完成签到,获得积分10
1秒前
徐京墨完成签到,获得积分10
1秒前
科目三应助JUN采纳,获得10
1秒前
花未开完成签到,获得积分10
1秒前
tanrui完成签到,获得积分10
1秒前
闪闪星星完成签到,获得积分10
2秒前
Profeto应助王川采纳,获得10
2秒前
兴奋的蜡烛完成签到,获得积分10
2秒前
CSHAN发布了新的文献求助10
2秒前
斯文败类应助考马斯靓女采纳,获得10
2秒前
舒心毛衣完成签到,获得积分10
3秒前
luluon完成签到,获得积分10
4秒前
斯文败类应助xr采纳,获得10
4秒前
4秒前
4秒前
4秒前
杜兰特工队完成签到,获得积分10
5秒前
热心市民应助jj采纳,获得20
5秒前
5秒前
赵宝正发布了新的文献求助10
5秒前
111完成签到,获得积分10
6秒前
贝肯妮完成签到,获得积分20
6秒前
6秒前
sunzhuxi发布了新的文献求助10
6秒前
7秒前
7秒前
彭于彦祖应助无情的骁采纳,获得30
8秒前
剑影发布了新的文献求助10
8秒前
8秒前
9秒前
wnan_07发布了新的文献求助10
9秒前
9秒前
9秒前
李健应助玩命的元霜采纳,获得10
10秒前
啊南发布了新的文献求助10
10秒前
fyl发布了新的文献求助10
10秒前
脑洞疼应助辣椒酱采纳,获得10
10秒前
ding应助单薄的书琴采纳,获得10
11秒前
丘比特应助zihuan采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406