Gaussian Synthesis for High-Precision Location in Oriented Object Detection

最小边界框 计算机科学 算法 跳跃式监视 探测器 高斯分布 解码方法 目标检测 计算机视觉 人工智能 模式识别(心理学) 图像(数学) 物理 量子力学 电信
作者
Zhonghua Li,Biao Hou,Zitong Wu,Bo Ren,Zhongle Ren,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:11
标识
DOI:10.1109/tgrs.2023.3310619
摘要

In aerial image scenes, the objects have properties of arbitrary orientation, large-scale range, and dense distribution. Thus, the object detector uses oriented bounding box (OBB) to locate objects, which is more complex and challenging than horizontal bounding box (HBB) detector. Mainstream OBB detectors mostly use one-to-many label assignment strategy to predict multiple bounding boxes for the same object, and filter out repeat predictions by non-maximum suppression (NMS). NMS ranks with confidence and drops the detection box with IoU higher than the threshold, which is easy to get the local optimum result. The clustered synthesis method gets more accurate results than the original NMS, but applying it to the OBB detector leads to border shift, which arises from the angular discontinuity problem. Therefore, we use Gaussian OBB (G-OBB) to deal with the angular discontinuity and thus eliminate the offset generated by direct synthesis. G-OBB is not an easy to understand and describe representation. For this reason, we analyze the properties of G-OBB, and design a decoding method to convert a G-OBB to a rotated rectangular box, further discussing its conditions. Based on the decoding method, we propose a Gaussian synthesis algorithm (GauS), which transforms the OBB into Gaussian space, followed by synthesis, and finally transforms the synthesis result back into a new OBB. We have derived the synthesis and decoding methods, and further verified their effectiveness. The extensive experiments on several existing models show that GauS takes very little computation and improves detector's high-precision performance. Extensive experiments verify the effectiveness, stability, and universality of the proposed algorithm. In addition, The RTMDet using GauS achieves a performance of 81.61 AP 50 and gains a 0.39% improvement in mAP, which achieves the SOTA performance. Our implementation is available at: https://github.com/lzh420202/GauS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
时尚饼干发布了新的文献求助10
1秒前
所所应助壮观依云采纳,获得10
1秒前
好汉完成签到,获得积分10
2秒前
彭于晏应助阿姜姜姜姜采纳,获得10
2秒前
慕容博发布了新的文献求助10
2秒前
cxj发布了新的文献求助10
2秒前
2秒前
yuanshl1985发布了新的文献求助10
2秒前
OO圈圈发布了新的文献求助10
2秒前
2秒前
吴帆发布了新的文献求助10
3秒前
虞访云完成签到,获得积分10
3秒前
FD完成签到,获得积分10
3秒前
Kou完成签到 ,获得积分10
3秒前
思源应助半截神经病采纳,获得10
4秒前
4秒前
四叶草完成签到 ,获得积分10
4秒前
不想干活应助喻冬采纳,获得10
4秒前
yk完成签到,获得积分10
5秒前
共享精神应助mayyyyyy采纳,获得10
5秒前
斯文败类应助于丽萍采纳,获得10
6秒前
小小发布了新的文献求助10
6秒前
6秒前
shirly完成签到,获得积分10
6秒前
6秒前
五个小白完成签到,获得积分10
6秒前
2032jia应助典雅的静采纳,获得10
6秒前
赚money发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
平芜尽处完成签到,获得积分10
7秒前
xinxin123发布了新的文献求助10
7秒前
7秒前
CodeCraft应助shark采纳,获得10
7秒前
包容的雅柏完成签到 ,获得积分10
7秒前
壮观依云完成签到,获得积分10
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598593
求助须知:如何正确求助?哪些是违规求助? 4009567
关于积分的说明 12412115
捐赠科研通 3689061
什么是DOI,文献DOI怎么找? 2033702
邀请新用户注册赠送积分活动 1066808
科研通“疑难数据库(出版商)”最低求助积分说明 951923